找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Noncommutative Dynamics and E-Semigroups; William Arveson Book 2003 Springer Science+Business Media New York 2003 C*-algebra.Hilbert space

[復(fù)制鏈接]
樓主: 分期
21#
發(fā)表于 2025-3-25 05:27:52 | 只看該作者
Noncommutative Dynamics and E-Semigroups978-0-387-21524-2Series ISSN 1439-7382 Series E-ISSN 2196-9922
22#
發(fā)表于 2025-3-25 11:28:48 | 只看該作者
23#
發(fā)表于 2025-3-25 11:59:32 | 只看該作者
-Semigroupstral objects of study in this book are semigroups of endomorphisms of infinite-dimensional type I factors. While it is usually convenient to coordinatize a type I factor . as the algebra .(.) of all bounded operators on a complex infinite-dimensional Hilbert space ., we will often be led to consider
24#
發(fā)表于 2025-3-25 18:11:41 | 只看該作者
25#
發(fā)表于 2025-3-25 21:11:05 | 只看該作者
26#
發(fā)表于 2025-3-26 03:30:50 | 只看該作者
Path Spaces, on which there is defined an associative product that represents concatenation of paths. There are many ways a given path space can be endowed with Hilbert space structures, in which a Hilbert space is associated with each interval in (0, ∞), in such a way that the Hilbert spaces corresponding to
27#
發(fā)表于 2025-3-26 07:51:28 | 只看該作者
28#
發(fā)表于 2025-3-26 09:26:10 | 只看該作者
29#
發(fā)表于 2025-3-26 15:26:01 | 只看該作者
-Generators and Dilation Theorysitive linear map . from a .-algebra . to .(.)can be dilated to a representation of .. More precisely, a . of . is a pair (.) consisting of a representation . of . on some other Hilbert space . and a bounded linear map . → . satisfying
30#
發(fā)表于 2025-3-26 19:21:51 | 只看該作者
Index Theory for ,-Semigroupsmigroup is defined in terms of basic structures associated with . that generalize the concrete product systems associated with .-semigroups. However, these stuctures are quite subtle when the individual maps are not multiplicative, and are of independent interest in that they provide new information
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南木林县| 绥中县| 顺昌县| 盐津县| 兰坪| 武鸣县| 安庆市| 池州市| 南木林县| 贵溪市| 鄱阳县| 赤峰市| 尚义县| 永修县| 乌兰浩特市| 荔浦县| 监利县| 德州市| 扎赉特旗| 乌鲁木齐县| 石门县| 沂源县| 兴义市| 太谷县| 汝南县| 深州市| 东阿县| 阳朔县| 临沧市| 五寨县| 玉环县| 永寿县| 密云县| 滨海县| 博罗县| 喜德县| 宣汉县| 兴仁县| 永州市| 双桥区| 云龙县|