找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Noncommutative Differential Geometry and Its Applications to Physics; Proceedings of the W Yoshiaki Maeda,Hitoshi Moriyoshi,Satoshi Watamur

[復(fù)制鏈接]
查看: 18690|回復(fù): 56
樓主
發(fā)表于 2025-3-21 18:20:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Noncommutative Differential Geometry and Its Applications to Physics
副標(biāo)題Proceedings of the W
編輯Yoshiaki Maeda,Hitoshi Moriyoshi,Satoshi Watamura
視頻videohttp://file.papertrans.cn/668/667189/667189.mp4
叢書名稱Mathematical Physics Studies
圖書封面Titlebook: Noncommutative Differential Geometry and Its Applications to Physics; Proceedings of the W Yoshiaki Maeda,Hitoshi Moriyoshi,Satoshi Watamur
描述Noncommutative differential geometry is a new approach to classical geometry. It was originally used by Fields Medalist A. Connes in the theory of foliations, where it led to striking extensions of Atiyah-Singer index theory. It also may be applicable to hitherto unsolved geometric phenomena and physical experiments. .However, noncommutative differential geometry was not well understood even among mathematicians. Therefore, an international symposium on commutative differential geometry and its applications to physics was held in Japan, in July 1999. Topics covered included: deformation problems, Poisson groupoids, operad theory, quantization problems, and D-branes. The meeting was attended by both mathematicians and physicists, which resulted in interesting discussions. This volume contains the refereed proceedings of this symposium. .Providing a state of the art overview of research in these topics, this book is suitable as a source book for a seminar in noncommutative geometry and physics..
出版日期Conference proceedings 2001
關(guān)鍵詞D-branes; Lattice gauge theory; Poisson groupoids; differential geometry; manifold; noncommutative differ
版次1
doihttps://doi.org/10.1007/978-94-010-0704-7
isbn_softcover978-94-010-3829-4
isbn_ebook978-94-010-0704-7Series ISSN 0921-3767 Series E-ISSN 2352-3905
issn_series 0921-3767
copyrightSpringer Science+Business Media Dordrecht 2001
The information of publication is updating

書目名稱Noncommutative Differential Geometry and Its Applications to Physics影響因子(影響力)




書目名稱Noncommutative Differential Geometry and Its Applications to Physics影響因子(影響力)學(xué)科排名




書目名稱Noncommutative Differential Geometry and Its Applications to Physics網(wǎng)絡(luò)公開度




書目名稱Noncommutative Differential Geometry and Its Applications to Physics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Noncommutative Differential Geometry and Its Applications to Physics被引頻次




書目名稱Noncommutative Differential Geometry and Its Applications to Physics被引頻次學(xué)科排名




書目名稱Noncommutative Differential Geometry and Its Applications to Physics年度引用




書目名稱Noncommutative Differential Geometry and Its Applications to Physics年度引用學(xué)科排名




書目名稱Noncommutative Differential Geometry and Its Applications to Physics讀者反饋




書目名稱Noncommutative Differential Geometry and Its Applications to Physics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:07:45 | 只看該作者
Hideki Omori,Yoshiaki Maeda,Naoya Miyazaki,Akira Yoshiokasinnlos, hieraus das Resultat auf 4, 5 oder gar 10 Ziffern ?genau“ zu berechnen Die letzteren Ziffern w?ren nicht nur überflüssig, sondern unrichtig. Der Rauminhalt eines prismatischen K?rpers von 2511 mm L?nge, 283 mm Breite und 154 mm H?he betr?gt nicht 109,434402 dm., sondern 109 dm.. W?ren die e
板凳
發(fā)表于 2025-3-22 04:20:35 | 只看該作者
Simon G. Scott,Krzysztof P. Wojciechowskisinnlos, hieraus das Resultat auf 4, 5 oder gar 10 Ziffern ?genau“ zu berechnen Die letzteren Ziffern w?ren nicht nur überflüssig, sondern unrichtig. Der Rauminhalt eines prismatischen K?rpers von 2511 mm L?nge, 283 mm Breite und 154 mm H?he betr?gt nicht 109,434402 dm., sondern 109 dm.. W?ren die e
地板
發(fā)表于 2025-3-22 07:27:48 | 只看該作者
5#
發(fā)表于 2025-3-22 12:37:37 | 只看該作者
6#
發(fā)表于 2025-3-22 15:23:41 | 只看該作者
Methods of Equivariant Quantization,p of symmetries. Examples are provided by conformai and projective differential geometry: given a smooth manifold . endowed with a flat conformal/projective structure, we establish a canonical isomorphism between the space of symmetric contravariant tensor fields on . and the space of differential o
7#
發(fā)表于 2025-3-22 18:57:34 | 只看該作者
8#
發(fā)表于 2025-3-22 22:17:32 | 只看該作者
9#
發(fā)表于 2025-3-23 01:24:09 | 只看該作者
10#
發(fā)表于 2025-3-23 06:19:06 | 只看該作者
Intersection Numbers on the Moduli Spaces of Stable Maps in Genus 0,ation for these classes in terms of boundary strata, derive differential equations for the generating functions of the Gromov-Witten invariants of . twisted by these tautological classes, and prove that these intersection numbers are completely determined by the Gromov-Witten invariants of .. This r
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开封市| 郯城县| 玉环县| 甘孜县| 开江县| 曲周县| 平远县| 涿州市| 安溪县| 宝兴县| 榕江县| 新竹市| 浦东新区| 陆河县| 正阳县| 青冈县| 永清县| 门头沟区| 扎鲁特旗| 云霄县| 大同市| 黄山市| 乌拉特后旗| 深圳市| 固始县| 朝阳县| 司法| 楚雄市| 灵川县| 德安县| 阿坝| 宁阳县| 龙井市| 青川县| 台安县| 咸丰县| 延安市| 洞头县| 芦山县| 天柱县| 那曲县|