找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Noncommutative Algebraic Geometry and Representations of Quantized Algebras; Alexander L. Rosenberg Book 1995 Springer Science+Business Me

[復(fù)制鏈接]
樓主: 海市蜃樓
11#
發(fā)表于 2025-3-23 09:42:24 | 只看該作者
12#
發(fā)表于 2025-3-23 14:24:04 | 只看該作者
Noncommutative Local Algebra, to be excellent in commutative and graded-commutative geometries. But even the simplest non-affine spaces that come into view in the non(graded)commutative case — analogs of quasi-affine schemes and projective spectra — very rarely can be covered with open affine subschemes.
13#
發(fā)表于 2025-3-23 21:37:59 | 只看該作者
Skew PBW monads and representations,. A skew PBW (Poincaré-Birkhoff-Witt) ring related to the map . is an associative ring .{.} which contains . as a subring and is a free right .-module with a basis {.. | . ∈ G} such that .. = ..(.).. for any . ∈ G and all . ∈ .. The symbol . stays for the multiplication table: .... = Σ... (. | .). W
14#
發(fā)表于 2025-3-24 00:48:37 | 只看該作者
15#
發(fā)表于 2025-3-24 03:54:39 | 只看該作者
16#
發(fā)表于 2025-3-24 07:52:56 | 只看該作者
17#
發(fā)表于 2025-3-24 12:50:52 | 只看該作者
mples I tried to understand, to begin with the first Weyl algebra and the quantum plane. The book reflects these developments as I worked them out in reallife and in my lectures. In Chapter 11, we study the left spectrum and irreducible representations of a whole lot of rings which are of interest for modern 978-90-481-4577-5978-94-015-8430-2
18#
發(fā)表于 2025-3-24 18:31:11 | 只看該作者
Noncommutative Algebraic Geometry and Representations of Quantized Algebras
19#
發(fā)表于 2025-3-24 20:49:16 | 只看該作者
20#
發(fā)表于 2025-3-25 00:17:08 | 只看該作者
6樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九龙坡区| 甘肃省| 随州市| 上饶市| 康保县| 潼南县| 化州市| 丹江口市| 永吉县| 科技| 九寨沟县| 牟定县| 临海市| 吉木萨尔县| 饶阳县| 两当县| 莒南县| 体育| 云安县| 西丰县| 遵义县| 青冈县| 四会市| 通渭县| 彭阳县| 定南县| 麻阳| 上栗县| 共和县| 汉中市| 苍山县| 大足县| 梅州市| 临澧县| 南丹县| 舞钢市| 鹤岗市| 登封市| 和龙市| 保康县| 利川市|