找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonautonomous Dynamics; Nonlinear Oscillatio David N. Cheban Book 2020 Springer Nature Switzerland AG 2020 Dynamical Systems.nonautonomous

[復制鏈接]
查看: 26029|回復: 37
樓主
發(fā)表于 2025-3-21 16:14:27 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Nonautonomous Dynamics
副標題Nonlinear Oscillatio
編輯David N. Cheban
視頻videohttp://file.papertrans.cn/668/667169/667169.mp4
概述Contributes to understanding and predicting global attractors for a special class of nonautonomous dynamical systems.Author is a leading expert in dynamical systems.Successfully applied to the resolut
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Nonautonomous Dynamics; Nonlinear Oscillatio David N. Cheban Book 2020 Springer Nature Switzerland AG 2020 Dynamical Systems.nonautonomous
描述.This book emphasizes those topological?methods (of dynamical systems) and theories that are useful in the study?of different classes of nonautonomous evolutionary equations. The content is developed over six chapters, providing?a thorough introduction to the techniques used in the Chapters III-VI described by Chapter I-II.?..The author gives a?systematic treatment of the basic mathematical theory and constructive methods for Nonautonomous Dynamics.?They show how these diverse topics are connected to other important parts of mathematics, including Topology,?Functional Analysis and Qualitative Theory of Differential/Difference Equations. Throughout the book a nice balance?is maintained between rigorous mathematics and applications (ordinary differential/difference equations, functional?differential equations and partial difference equations).?.The primary readership includes graduate and PhD students?and researchers inin the field of dynamical systems and their applications (control theory, economic dynamics,??mathematical theory of climate, population dynamics, oscillation theory etc)..
出版日期Book 2020
關(guān)鍵詞Dynamical Systems; nonautonomous evolutionary equations; Nonautonomous Dynamics; Topology; Functional An
版次1
doihttps://doi.org/10.1007/978-3-030-34292-0
isbn_softcover978-3-030-34294-4
isbn_ebook978-3-030-34292-0Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Nonautonomous Dynamics影響因子(影響力)




書目名稱Nonautonomous Dynamics影響因子(影響力)學科排名




書目名稱Nonautonomous Dynamics網(wǎng)絡公開度




書目名稱Nonautonomous Dynamics網(wǎng)絡公開度學科排名




書目名稱Nonautonomous Dynamics被引頻次




書目名稱Nonautonomous Dynamics被引頻次學科排名




書目名稱Nonautonomous Dynamics年度引用




書目名稱Nonautonomous Dynamics年度引用學科排名




書目名稱Nonautonomous Dynamics讀者反饋




書目名稱Nonautonomous Dynamics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:12:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:51:01 | 只看該作者
地板
發(fā)表于 2025-3-22 06:02:36 | 只看該作者
Compact Global Attractors, locally compact spaces, the three types of dissipativity are equivalent. Examples are given showing that in the general case, the notions of point, compact, and local dissipativity are different. The notion of Levinson’s center (the maximal compact invariant set), which is an important characteristic of compact dissipative systems, is introduced.
5#
發(fā)表于 2025-3-22 12:05:47 | 只看該作者
978-3-030-34294-4Springer Nature Switzerland AG 2020
6#
發(fā)表于 2025-3-22 15:58:28 | 只看該作者
Nonautonomous Dynamics978-3-030-34292-0Series ISSN 1439-7382 Series E-ISSN 2196-9922
7#
發(fā)表于 2025-3-22 17:24:21 | 只看該作者
Springer Monographs in Mathematicshttp://image.papertrans.cn/n/image/667169.jpg
8#
發(fā)表于 2025-3-22 21:26:23 | 只看該作者
9#
發(fā)表于 2025-3-23 03:12:02 | 只看該作者
Analytical Dissipative Systems,One of the most studied classes of nonlinear ODEs is the class of .-analytic differential equations, i.e., the equations .where the right-hand side . is a holomorphic function with respect to a complex variable ..
10#
發(fā)表于 2025-3-23 08:25:48 | 只看該作者
Almost Periodic Solutions of Linear Differential Equations,The well-known Favard’s theorem states that the linear differential equation .with Bohr almost periodic coefficients admits at least one Bohr almost periodic solution if it has a bounded solution.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
桃园县| 安乡县| 安康市| 鄂伦春自治旗| 佛教| 丹江口市| 乌兰察布市| 凤翔县| 樟树市| 体育| 灵丘县| 林甸县| 永和县| 沭阳县| 阜新市| 抚远县| 沧州市| 恭城| 华蓥市| 治县。| 南通市| 乌兰县| 江孜县| 濮阳县| 冀州市| 衡阳市| 仙游县| 灵丘县| 万源市| 白城市| 萨迦县| 太和县| 白银市| 武冈市| 阿勒泰市| 霍邱县| 恩施市| 留坝县| 博客| 阳城县| 四子王旗|