找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-vanishing of L-Functions and Applications; M. Ram Murty,V. Kumar Murty Book 1997 Springer Basel AG 1997 Number theory.alegbraic geomet

[復(fù)制鏈接]
查看: 52736|回復(fù): 43
樓主
發(fā)表于 2025-3-21 17:01:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Non-vanishing of L-Functions and Applications
編輯M. Ram Murty,V. Kumar Murty
視頻videohttp://file.papertrans.cn/668/667156/667156.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Non-vanishing of L-Functions and Applications;  M. Ram Murty,V. Kumar Murty Book 1997 Springer Basel AG 1997 Number theory.alegbraic geomet
描述This monograph brings together a collection of results on the non-vanishing of L- functions. The presentation, though based largely on the original papers, is suitable for independent study. A number of exercises have also been provided to aid in this endeavour. The exercises are of varying difficulty and those which require more effort have been marked with an asterisk. The authors would like to thank the Institut d‘Estudis Catalans for their encouragement of this work through the Ferran Sunyer i Balaguer Prize. We would also like to thank the Institute for Advanced Study, Princeton for the excellent conditions which made this work possible, as well as NSERC, NSF and FCAR for funding. Princeton M. Ram Murty August, 1996 V. Kumar Murty Introduction Since the time of Dirichlet and Riemann, the analytic properties of L-functions have been used to establish theorems of a purely arithmetic nature. The distri- bution of prime numbers in arithmetic progressions is intimately connected with non-vanishing properties of various L-functions. With the subsequent advent of the Tauberian theory as developed by Wiener and Ikehara, these arithmetical the- orems have been shown to be equivalent to
出版日期Book 1997
關(guān)鍵詞Number theory; alegbraic geometry; arithmetic; number theory; prime number
版次1
doihttps://doi.org/10.1007/978-3-0348-8956-8
isbn_softcover978-3-0348-9843-0
isbn_ebook978-3-0348-8956-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Basel AG 1997
The information of publication is updating

書目名稱Non-vanishing of L-Functions and Applications影響因子(影響力)




書目名稱Non-vanishing of L-Functions and Applications影響因子(影響力)學(xué)科排名




書目名稱Non-vanishing of L-Functions and Applications網(wǎng)絡(luò)公開度




書目名稱Non-vanishing of L-Functions and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Non-vanishing of L-Functions and Applications被引頻次




書目名稱Non-vanishing of L-Functions and Applications被引頻次學(xué)科排名




書目名稱Non-vanishing of L-Functions and Applications年度引用




書目名稱Non-vanishing of L-Functions and Applications年度引用學(xué)科排名




書目名稱Non-vanishing of L-Functions and Applications讀者反饋




書目名稱Non-vanishing of L-Functions and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:59:14 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:47:21 | 只看該作者
地板
發(fā)表于 2025-3-22 08:14:10 | 只看該作者
Non-vanishing of L-Functions and Applications978-3-0348-8956-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
5#
發(fā)表于 2025-3-22 12:25:53 | 只看該作者
6#
發(fā)表于 2025-3-22 13:05:38 | 只看該作者
https://doi.org/10.1007/978-3-0348-8956-8Number theory; alegbraic geometry; arithmetic; number theory; prime number
7#
發(fā)表于 2025-3-22 19:36:18 | 只看該作者
8#
發(fā)表于 2025-3-22 23:50:31 | 只看該作者
Artin ,-Functions,In this section, we shall collect together a few group theoretic preliminaries. We begin by reviewing the basic aspects of characters and class functions.
9#
發(fā)表于 2025-3-23 05:03:05 | 只看該作者
Equidistribution and L-Functions,Let . be a compact topological space and .(.) the Banach space of continuous, complex-valued functions on ., with the supremum norm:
10#
發(fā)表于 2025-3-23 07:42:13 | 只看該作者
Dirichlet L-Functions,Let . denote a Dirichlet character and .(.) the associated Dirichlet .-function. Let us begin by considering how one would approach the problem of showing that .(1/2, .) ≠ 0. In the following, we assume that . is defined modulo a prime . We first study the average
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九龙城区| 沧州市| 泰来县| 宜都市| 昆明市| 裕民县| 龙陵县| 德令哈市| 和硕县| 芦山县| 万宁市| 长兴县| 正宁县| 肥西县| 洛隆县| 翁牛特旗| 策勒县| 平江县| 读书| 青铜峡市| 桃江县| 钟山县| 呼伦贝尔市| 建昌县| 华坪县| 富锦市| 日照市| 毕节市| 容城县| 黄冈市| 米泉市| 大同市| 简阳市| 当雄县| 上饶县| 双峰县| 家居| 澄迈县| 永吉县| 年辖:市辖区| 柞水县|