找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-self-adjoint Schr?dinger Operator with a Periodic Potential; Oktay Veliev Book 2021 The Editor(s) (if applicable) and The Author(s), u

[復制鏈接]
樓主: Kennedy
11#
發(fā)表于 2025-3-23 12:22:42 | 只看該作者
Oktay Veliev niques has become a matter of routine for the analytically oriented organic chemist. Those who have graduated recently received extensive training in these techniques as part of the curriculum while their older colleagues learned to use these methods by necessity. One can, therefore, assume that chemists are978-3-662-22455-7Series ISSN 0172-4967
12#
發(fā)表于 2025-3-23 14:05:55 | 只看該作者
Oktay Velievs become a matter of routine for the analytically oriented organic chemist. Those who have graduated recently received extensive training in these techniques as part of the curriculum while their older colleagues learned to use these methods by necessity. One can, therefore, assume that chemists are
13#
發(fā)表于 2025-3-23 20:53:58 | 只看該作者
,Spectral Theory for the Schr?dinger Operator with a Complex-Valued Periodic Potential,l expansion. Finally, in Sect. ., we find the conditions on the potential . for the asymptotic spectrality of .(.). Some calculations and estimations of this chapter are given in Sect.?. (Appendices).
14#
發(fā)表于 2025-3-24 02:05:16 | 只看該作者
15#
發(fā)表于 2025-3-24 06:10:07 | 只看該作者
16#
發(fā)表于 2025-3-24 08:14:27 | 只看該作者
17#
發(fā)表于 2025-3-24 14:33:07 | 只看該作者
rmitian quantum mechanics and optics. Featuring detailed proofs and a comprehensive treatment of the subject matter, the book is ideally suited for graduate students at the intersection of physics and mathematics..978-3-030-72685-0978-3-030-72683-6
18#
發(fā)表于 2025-3-24 18:55:08 | 只看該作者
19#
發(fā)表于 2025-3-24 21:57:03 | 只看該作者
20#
發(fā)表于 2025-3-25 00:10:07 | 只看該作者
Introduction and Overview,first explain the importance of spectral theorems for self-adjoint operators in Quantum Mechanics. Then the differences in methods for studying self-adjoint and non-self-adjoint operators are discussed. In addition, we explain the need to search for new methods for various cases of the non-self-adjo
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-21 14:54
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
康马县| 民勤县| 龙游县| 彭泽县| 合川市| 乐都县| 理塘县| 句容市| 武威市| 巴彦淖尔市| 水城县| 阜新市| 易门县| 大安市| 成都市| 肃宁县| 兴山县| 高淳县| 韶山市| 南木林县| 汶上县| 九龙城区| 民权县| 马龙县| 大同市| 五河县| 陆河县| 通江县| 琼中| 长宁区| 汕头市| 策勒县| 大城县| 奉化市| 大石桥市| 张家港市| 东港市| 绥阳县| 湾仔区| 班戈县| 新龙县|