找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-negative Matrix Factorization Techniques; Advances in Theory a Ganesh R. Naik Book 2016 Springer-Verlag Berlin Heidelberg 2016 Blind So

[復(fù)制鏈接]
查看: 22121|回復(fù): 42
樓主
發(fā)表于 2025-3-21 17:33:28 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Non-negative Matrix Factorization Techniques
副標(biāo)題Advances in Theory a
編輯Ganesh R. Naik
視頻videohttp://file.papertrans.cn/668/667135/667135.mp4
概述Covers the latest cutting edge topics on NMF and emphasis on open problems on NMF.Balance on both theory and applications with examples.Offers in-depth analysis of NMF topics simply not covered elsewh
叢書名稱Signals and Communication Technology
圖書封面Titlebook: Non-negative Matrix Factorization Techniques; Advances in Theory a Ganesh R. Naik Book 2016 Springer-Verlag Berlin Heidelberg 2016 Blind So
描述.This book collects new results, concepts and further developments of NMF. The open problems discussed include, e.g. in bioinformatics: NMF and its extensions applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining etc. The research results previously scattered in different scientific journals and conference proceedings are methodically collected and presented in a unified form. While readers can read the book chapters sequentially, each chapter is also self-contained. This book can be a good reference work for researchers and engineers interested in NMF, and can also be used as a handbook for students and professionals seeking to gain a better understanding of the latest applications of NMF..
出版日期Book 2016
關(guān)鍵詞Blind Source Separation; Multi-layer NMF; Non-negative Matrix Factorisation (NMF); Pattern Recognition;
版次1
doihttps://doi.org/10.1007/978-3-662-48331-2
isbn_softcover978-3-662-51700-0
isbn_ebook978-3-662-48331-2Series ISSN 1860-4862 Series E-ISSN 1860-4870
issn_series 1860-4862
copyrightSpringer-Verlag Berlin Heidelberg 2016
The information of publication is updating

書目名稱Non-negative Matrix Factorization Techniques影響因子(影響力)




書目名稱Non-negative Matrix Factorization Techniques影響因子(影響力)學(xué)科排名




書目名稱Non-negative Matrix Factorization Techniques網(wǎng)絡(luò)公開度




書目名稱Non-negative Matrix Factorization Techniques網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Non-negative Matrix Factorization Techniques被引頻次




書目名稱Non-negative Matrix Factorization Techniques被引頻次學(xué)科排名




書目名稱Non-negative Matrix Factorization Techniques年度引用




書目名稱Non-negative Matrix Factorization Techniques年度引用學(xué)科排名




書目名稱Non-negative Matrix Factorization Techniques讀者反饋




書目名稱Non-negative Matrix Factorization Techniques讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:05:00 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:24:32 | 只看該作者
Automatic Extractive Multi-document Summarization Based on Archetypal Analysis, sentences and therefore leads to variability and diversity in content of the generated summaries. We conducted experiments on the data of document understanding conference. Experimental results evidence the improvement of the proposed approach over other closely related methods including ones using the NMF.
地板
發(fā)表于 2025-3-22 08:25:39 | 只看該作者
Time-Scale-Based Segmentation for Degraded PCG Signals Using NMF,rences calculated along the time-scales. The simulation results using real recorded noisy PCG data that provide promising performance with high overall accuracy on the segmentation of narrowly separated, high noisy signals by our proposed method.
5#
發(fā)表于 2025-3-22 12:29:45 | 只看該作者
Nonnegative Matrix Factorizations for Intelligent Data Analysis,ill the understandability requirement in several ways. We also describe a novel method to decompose data into user-defined—hence understandable—parts by means of a mask on the feature matrix, and show the method’s effectiveness through some numerical examples.
6#
發(fā)表于 2025-3-22 15:26:32 | 只看該作者
7#
發(fā)表于 2025-3-22 17:58:07 | 只看該作者
Bounded Matrix Low Rank Approximation,rld datasets illustrate that the proposed method BMA outperforms the state-of-the-art algorithms for recommender system such as stochastic gradient descent, alternating least squares with regularization, SVD++ and bias-SVD on real-world datasets such as Jester, Movielens, Book crossing, Online dating, and Netflix.
8#
發(fā)表于 2025-3-22 22:16:14 | 只看該作者
9#
發(fā)表于 2025-3-23 01:51:01 | 只看該作者
10#
發(fā)表于 2025-3-23 07:24:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云龙县| 上饶市| 临海市| 阆中市| 湘潭市| 舞阳县| 九台市| 仁布县| 宜兴市| 新化县| 南郑县| 鄂伦春自治旗| 驻马店市| 内江市| 万荣县| 永川市| 南江县| 怀化市| 新郑市| 修武县| 泗洪县| 芮城县| 新和县| 红桥区| 襄垣县| 裕民县| 沅江市| 汝阳县| 阿图什市| 通许县| 秦皇岛市| 修文县| 公主岭市| 乌兰县| 天全县| 邯郸县| 博罗县| 兴城市| 永川市| 且末县| 梅河口市|