找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-metrisable Manifolds; David Gauld Book 2014 Springer Science+Business Media Singapore 2014 Bagpipe Theorem.Brown’s Monotone Union Theo

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 06:37:09 | 只看該作者
22#
發(fā)表于 2025-3-25 08:36:41 | 只看該作者
23#
發(fā)表于 2025-3-25 14:30:32 | 只看該作者
d for other applications. Parameters for nuclear levels of stable nuclei have been published in the Volumes I/16B, I/18A, B, C, and in I/19A1, A2. In the Volumes I/19A, B further data obtained from transfer reactions are presented. Volume I/19C contains the data of unstable nuclei far from the stabi
24#
發(fā)表于 2025-3-25 16:25:26 | 只看該作者
25#
發(fā)表于 2025-3-25 22:33:16 | 只看該作者
David Gauld tool in various branches of Mathematics is firmly established. Previous publications include the contributions by A. Erdelyi and Roberts and Kaufmann (see References). Special consideration is given to results involving higher functions as integrand and it is believed that a substantial amount of t
26#
發(fā)表于 2025-3-26 03:53:02 | 只看該作者
27#
發(fā)表于 2025-3-26 07:49:35 | 只看該作者
28#
發(fā)表于 2025-3-26 11:14:23 | 只看該作者
29#
發(fā)表于 2025-3-26 16:27:53 | 只看該作者
Type I Manifolds and the Bagpipe Theorem,f Type I and is countably compact. Nyikos then went on to prove his amazing Bagpipe Theorem which describes the structure of .-bounded surfaces. We present a proof of Nyikos’s Bagpipe Theorem. We also show that there are . many .-bounded, connected surfaces: contrast this with the compact, connected surfaces of which there are only . many.
30#
發(fā)表于 2025-3-26 18:20:35 | 只看該作者
,Homeomorphisms and Dynamics on?Non-metrisable Manifolds,ly to powers of the long line where we find the situation to be significantly different from the situation for powers of the real line: points where at least two coordinates agree combine to form barriers to the behaviour of homeomorphisms. We also display a surface whose group of homeomorphisms modulo isotopy is isomorphic to ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
耿马| 沽源县| 孟村| 获嘉县| 澎湖县| 红桥区| 南宁市| 钟祥市| 盐城市| 虹口区| 叶城县| 河南省| 新龙县| 米脂县| 襄城县| 平邑县| 安陆市| 政和县| 奈曼旗| 巴林右旗| 壶关县| 奉贤区| 吉隆县| 白银市| 手机| 墨竹工卡县| 罗山县| 开鲁县| 株洲县| 蒙城县| 阿巴嘎旗| 山丹县| 建昌县| 合阳县| 泰州市| 兴文县| 松桃| 定安县| 河北省| 安西县| 托克逊县|