找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-commutative and Non-associative Algebra and Analysis Structures; SPAS 2019, V?ster?s, Sergei Silvestrov,Anatoliy Malyarenko Conference

[復制鏈接]
樓主: 無力向前
11#
發(fā)表于 2025-3-23 12:47:03 | 只看該作者
12#
發(fā)表于 2025-3-23 17:46:19 | 只看該作者
13#
發(fā)表于 2025-3-23 20:45:32 | 只看該作者
Network Rewriting Utility Description,on—more precisely to systematically discover non-obvious consequences of the axioms for various algebraic structures. In particular this program can cope with algebraic structures, such as bi- and Hopf algebras, that mix classical operations with co-operations.
14#
發(fā)表于 2025-3-23 23:22:41 | 只看該作者
,Double Constructions of?BiHom-Frobenius Algebras, symmetric bilinear form . where . and . are the products defined on . and . respectively, and . and . stand for the corresponding algebra homomorphisms. Such a double construction, also called Hom-Frobenius algebra, is interpreted in terms of an infinitesimal Hom-bialgebra. The same procedure is ap
15#
發(fā)表于 2025-3-24 02:52:23 | 只看該作者
,On Classification of?(n+1)-Dimensional n-Hom-Lie Algebras with?Nilpotent Twisting Maps,y classify them. Some specific properties of .-dimensional .-Hom-Lie algebra such as nilpotence, solvability, center, ideals, derived series and central descending series are studied, the Hom-Nambu-Filippov identity for various classes of twisting maps in dimension . is considered, and systems of eq
16#
發(fā)表于 2025-3-24 07:58:21 | 只看該作者
2194-1009 luding many open problems.The goal of the 2019 conference on Stochastic Processes and Algebraic Structures held in SPAS2019, V?ster?s, Sweden, from September 30th to October 2nd 2019 was to showcase the frontiers of research in several important topics of mathematics, mathematical statistics, and it
17#
發(fā)表于 2025-3-24 12:59:52 | 只看該作者
An Application of Twisted Group Rings in Secure Group Communications,rmation leakage as the number of users grows. Moreover we show that further rekeying messages provide forward and backward security, that means that no former or future user in a communication group can get information on previous or new future keys.
18#
發(fā)表于 2025-3-24 17:28:45 | 只看該作者
19#
發(fā)表于 2025-3-24 19:18:15 | 只看該作者
20#
發(fā)表于 2025-3-25 00:08:31 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
法库县| 扶余县| 佛坪县| 龙海市| 佳木斯市| 改则县| 佛学| 溧阳市| 霍山县| 名山县| 万山特区| 香格里拉县| 巴东县| 栖霞市| 台安县| 芷江| 江源县| 汽车| 通海县| 潮安县| 祁东县| 金山区| 榕江县| 塔河县| 蒙山县| 临夏县| 广东省| 林州市| 伊宁县| 安阳市| 乌鲁木齐市| 上高县| 边坝县| 汉沽区| 都匀市| 海晏县| 皋兰县| 和顺县| 永修县| 大冶市| 昭平县|