找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-commutative and Non-associative Algebra and Analysis Structures; SPAS 2019, V?ster?s, Sergei Silvestrov,Anatoliy Malyarenko Conference

[復(fù)制鏈接]
樓主: 無力向前
11#
發(fā)表于 2025-3-23 12:47:03 | 只看該作者
12#
發(fā)表于 2025-3-23 17:46:19 | 只看該作者
13#
發(fā)表于 2025-3-23 20:45:32 | 只看該作者
Network Rewriting Utility Description,on—more precisely to systematically discover non-obvious consequences of the axioms for various algebraic structures. In particular this program can cope with algebraic structures, such as bi- and Hopf algebras, that mix classical operations with co-operations.
14#
發(fā)表于 2025-3-23 23:22:41 | 只看該作者
,Double Constructions of?BiHom-Frobenius Algebras, symmetric bilinear form . where . and . are the products defined on . and . respectively, and . and . stand for the corresponding algebra homomorphisms. Such a double construction, also called Hom-Frobenius algebra, is interpreted in terms of an infinitesimal Hom-bialgebra. The same procedure is ap
15#
發(fā)表于 2025-3-24 02:52:23 | 只看該作者
,On Classification of?(n+1)-Dimensional n-Hom-Lie Algebras with?Nilpotent Twisting Maps,y classify them. Some specific properties of .-dimensional .-Hom-Lie algebra such as nilpotence, solvability, center, ideals, derived series and central descending series are studied, the Hom-Nambu-Filippov identity for various classes of twisting maps in dimension . is considered, and systems of eq
16#
發(fā)表于 2025-3-24 07:58:21 | 只看該作者
2194-1009 luding many open problems.The goal of the 2019 conference on Stochastic Processes and Algebraic Structures held in SPAS2019, V?ster?s, Sweden, from September 30th to October 2nd 2019 was to showcase the frontiers of research in several important topics of mathematics, mathematical statistics, and it
17#
發(fā)表于 2025-3-24 12:59:52 | 只看該作者
An Application of Twisted Group Rings in Secure Group Communications,rmation leakage as the number of users grows. Moreover we show that further rekeying messages provide forward and backward security, that means that no former or future user in a communication group can get information on previous or new future keys.
18#
發(fā)表于 2025-3-24 17:28:45 | 只看該作者
19#
發(fā)表于 2025-3-24 19:18:15 | 只看該作者
20#
發(fā)表于 2025-3-25 00:08:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海淀区| 桓仁| 阿拉善左旗| 紫云| 衡南县| 甘泉县| 峡江县| 武冈市| 德州市| 平陆县| 宁海县| 神木县| 酒泉市| 祁连县| 达日县| 河池市| 永州市| 浦东新区| 育儿| 宜城市| 友谊县| 饶平县| 丹阳市| 东兴市| 榆中县| 江阴市| 鄂托克旗| 鹤壁市| 灵台县| 长沙县| 吉林省| 湖南省| 威远县| 罗甸县| 庆云县| 栾城县| 蓬溪县| 昌乐县| 崇文区| 新津县| 丰镇市|