找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Standard Parameter Adaptation for Exploratory Data Analysis; Wesam Ashour Barbakh,Ying Wu,Colin Fyfe Book 2009 Springer-Verlag Berlin

[復(fù)制鏈接]
查看: 27314|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:29:38 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Non-Standard Parameter Adaptation for Exploratory Data Analysis
編輯Wesam Ashour Barbakh,Ying Wu,Colin Fyfe
視頻videohttp://file.papertrans.cn/668/667033/667033.mp4
概述Presents novel methods of parameter adaptation in machine learning.Valuable contribution to create a true artificial intelligence.Recent research in Reinforcement learning, cross entropy and artificia
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Non-Standard Parameter Adaptation for Exploratory Data Analysis;  Wesam Ashour Barbakh,Ying Wu,Colin Fyfe Book 2009 Springer-Verlag Berlin
描述.Exploratory data analysis, also known as data mining or knowledge discovery from databases, is typically based on the optimisation of a specific function of a dataset. Such optimisation is often performed with gradient descent or variations thereof. In this book, we first lay the groundwork by reviewing some standard clustering algorithms and projection algorithms before presenting various non-standard criteria for clustering. The family of algorithms developed are shown to perform better than the standard clustering algorithms on a variety of datasets...We then consider extensions of the basic mappings which maintain some topology of the original data space. Finally we show how reinforcement learning can be used as a clustering mechanism before turning to projection methods. ...We show that several varieties of reinforcement learning may also be used to define optimal projections for example for principal component analysis, exploratory projection pursuit and canonical correlation analysis. The new method of cross entropy adaptation is then introduced and used as a means of optimising projections. Finally an artificial immune system is used to create optimal projections and combi
出版日期Book 2009
關(guān)鍵詞Clustering; data analysis; data mining; knowledge discovery; machine learning; principal component analys
版次1
doihttps://doi.org/10.1007/978-3-642-04005-4
isbn_softcover978-3-642-26055-1
isbn_ebook978-3-642-04005-4Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Non-Standard Parameter Adaptation for Exploratory Data Analysis影響因子(影響力)




書目名稱Non-Standard Parameter Adaptation for Exploratory Data Analysis影響因子(影響力)學(xué)科排名




書目名稱Non-Standard Parameter Adaptation for Exploratory Data Analysis網(wǎng)絡(luò)公開度




書目名稱Non-Standard Parameter Adaptation for Exploratory Data Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Non-Standard Parameter Adaptation for Exploratory Data Analysis被引頻次




書目名稱Non-Standard Parameter Adaptation for Exploratory Data Analysis被引頻次學(xué)科排名




書目名稱Non-Standard Parameter Adaptation for Exploratory Data Analysis年度引用




書目名稱Non-Standard Parameter Adaptation for Exploratory Data Analysis年度引用學(xué)科排名




書目名稱Non-Standard Parameter Adaptation for Exploratory Data Analysis讀者反饋




書目名稱Non-Standard Parameter Adaptation for Exploratory Data Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:32:39 | 只看該作者
Reinforcement Learning of Projections,e show that the last method has accurate convergence, even for non-linear projections..Also, it is frequently important in projection methods to identify multiple components. Although we can find more than one component by deflationary methods such as the Gram-Schmidt method, these methods seem to b
板凳
發(fā)表于 2025-3-22 01:18:20 | 只看該作者
地板
發(fā)表于 2025-3-22 06:20:34 | 只看該作者
5#
發(fā)表于 2025-3-22 10:07:45 | 只看該作者
6#
發(fā)表于 2025-3-22 14:11:36 | 只看該作者
7#
發(fā)表于 2025-3-22 20:46:56 | 只看該作者
1860-949X elation analysis. The new method of cross entropy adaptation is then introduced and used as a means of optimising projections. Finally an artificial immune system is used to create optimal projections and combi978-3-642-26055-1978-3-642-04005-4Series ISSN 1860-949X Series E-ISSN 1860-9503
8#
發(fā)表于 2025-3-23 00:50:53 | 只看該作者
Book 2009tion of a dataset. Such optimisation is often performed with gradient descent or variations thereof. In this book, we first lay the groundwork by reviewing some standard clustering algorithms and projection algorithms before presenting various non-standard criteria for clustering. The family of algo
9#
發(fā)表于 2025-3-23 02:54:45 | 只看該作者
Review of Linear Projection Methods,ered data space by projecting the data to a lower dimensional space. The basic idea is to find some suitable function ., which maps the original data sample . into a .-dimensional manifold by .(.)?=?., where .. In this section, we review several projection methods in detail.
10#
發(fā)表于 2025-3-23 09:01:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 19:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岫岩| 邛崃市| 长垣县| 大足县| 乐昌市| 浦江县| 余干县| 泗洪县| 蓬莱市| 青阳县| 临沧市| 伽师县| 温州市| 雅江县| 安西县| 石景山区| 巩义市| 天峻县| 淳化县| 桓仁| 罗甸县| 大姚县| 吴堡县| 荥阳市| 临漳县| 承德市| 民乐县| 陆丰市| 龙海市| 磐石市| 黔东| 岳池县| 宝丰县| 永年县| 汝南县| 石棉县| 油尖旺区| 罗江县| 西青区| 定襄县| 安庆市|