找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations; Johannes Sj?strand Book 2019 Springer Nature Switz

[復(fù)制鏈接]
樓主: 誓約
31#
發(fā)表于 2025-3-26 23:56:28 | 只看該作者
32#
發(fā)表于 2025-3-27 04:49:18 | 只看該作者
Pseudo-Differential Operatorshttp://image.papertrans.cn/n/image/667022.jpg
33#
發(fā)表于 2025-3-27 05:19:15 | 只看該作者
34#
發(fā)表于 2025-3-27 13:09:23 | 只看該作者
35#
發(fā)表于 2025-3-27 14:10:01 | 只看該作者
Quasi-Modes in Higher Dimensionhe same domain given by . Here . denotes the Hamilton vector field of .. The following result is due to Zworski, who obtained it via a semi-classical reduction from the above mentioned result of H?rmander. A direct proof was given in Dencker et al. and here we give a variant. We will assume some familiarity with symplectic geometry.
36#
發(fā)表于 2025-3-27 21:50:33 | 只看該作者
37#
發(fā)表于 2025-3-28 00:17:05 | 只看該作者
Counting Zeros of Holomorphic Functionsand (Math Ann 342(1):177–243, 2008. .) we obtained such a generalization, by weakening the regularity assumptions on the functions .. However, due to some logarithmic losses, we were not quite able to recover Hager’s original result, and we still had a fixed domain Γ with smooth boundary.
38#
發(fā)表于 2025-3-28 05:39:00 | 只看該作者
Perturbations of Jordan Blocksmall (random) perturbation of .. we expect the eigenvalues to move inside a small neighborhood of .. In the special case when .?=?(.|..).., where . is the canonical basis in .., we have seen in Sect. . that the eigenvalues of .. are of the form . so if we fix 0?
39#
發(fā)表于 2025-3-28 08:18:02 | 只看該作者
40#
發(fā)表于 2025-3-28 12:49:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
招远市| 苏州市| 房产| 洛宁县| 万安县| 天台县| 布尔津县| 青河县| 石嘴山市| 合阳县| 崇州市| 宜宾县| 澳门| 都江堰市| 磴口县| 厦门市| 诸暨市| 巴林右旗| 措勤县| 六盘水市| 富民县| 昌图县| 武邑县| 尖扎县| 贡嘎县| 延安市| 奉新县| 岚皋县| 龙井市| 伽师县| 小金县| 鸡泽县| 江陵县| 天气| 上犹县| 和顺县| 乌海市| 丰城市| 兴国县| 石狮市| 六安市|