找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Monotonic Extensions of Logic Programming; ICLP ‘94 Workshop, S Jürgen Dix,Louis Moniz Pereira,Teodor C. Przymusin Conference proceedin

[復制鏈接]
樓主: HEM
11#
發(fā)表于 2025-3-23 10:22:28 | 只看該作者
A general approach to bottom-up computation of disjunctive semantics,or the remaining literals, we propose to use an appropriate completion of the residual program, which syntactically characterizes the intended models. In the case of the stable model semantics, we utilize an interesting connection to .‘s completion.
12#
發(fā)表于 2025-3-23 15:56:22 | 只看該作者
13#
發(fā)表于 2025-3-23 21:38:50 | 只看該作者
From disjunctive programs to abduction,l negation and epistemic disjunction are used in the first of these approaches, abductive logic programs with classical negation in the second, and a simpler form of abductive logic programming — without classical negation — in the third. In the literature, these ideas have been illustrated with exa
14#
發(fā)表于 2025-3-24 01:26:28 | 只看該作者
15#
發(fā)表于 2025-3-24 05:51:28 | 只看該作者
16#
發(fā)表于 2025-3-24 06:31:43 | 只看該作者
17#
發(fā)表于 2025-3-24 11:51:12 | 只看該作者
18#
發(fā)表于 2025-3-24 15:29:11 | 只看該作者
19#
發(fā)表于 2025-3-24 21:36:05 | 只看該作者
Static semantics as program transformation and well-founded computation,ed semantics for normal programs. Based on considerations about how disjunctive information is treated by a given semantics, we divide the computation of that semantics into two phases. The first one is a program transformation phase, which applies axiom schemata expressing how derivations involving
20#
發(fā)表于 2025-3-24 23:34:26 | 只看該作者
Magic computation for well-founded semantics,we introduce a new magic templates transformation and give a new fixed point characterization of the well-founded semantics, lifting an existing definition from the ground to the non-ground case. The new fixed point characterization enables us to show a step-by-step correspondence between the naive
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 20:30
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
桐柏县| 长沙市| 凤台县| 饶阳县| 肇庆市| 曲沃县| 南阳市| 盘锦市| 綦江县| 兰溪市| 城市| 定州市| 肇东市| 北宁市| 大安市| 分宜县| 将乐县| 富顺县| 会理县| 淅川县| 寿阳县| 古浪县| 内江市| 潢川县| 宁蒗| 凤翔县| 龙游县| 美姑县| 潍坊市| 湾仔区| 太康县| 南华县| 胶州市| 英山县| 汉阴县| 绥滨县| 东兰县| 抚宁县| 明光市| 湘西| 樟树市|