找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Hermitian Hamiltonians in Quantum Physics; Selected Contributio Fabio Bagarello,Roberto Passante,Camillo Trapani Conference proceedings

[復制鏈接]
樓主: 夾子
31#
發(fā)表于 2025-3-26 21:00:52 | 只看該作者
,Deformed and SUSY-Deformed Graphene: First Results,g .-pseudo bosons and the other supersymmetric quantum mechanics. In particular, in connection with .-pseudo bosons, we show how biorthogonal sets arise, and we discuss when these sets are bases for the Hilbert space where the model is defined, and when they are not. For the SUSY extension of the mo
32#
發(fā)表于 2025-3-27 05:03:57 | 只看該作者
Localised Nonlinear Modes in the ,-Symmetric Double-Delta Well Gross-Pitaevskii Equation,the form of two .-function wells, where one well loses particles while the other one is fed with atoms at an equal rate. The parameters of the constructed solutions are expressible in terms of the roots of a system of two transcendental algebraic equations. We also furnish a simple analytical treatm
33#
發(fā)表于 2025-3-27 09:12:19 | 只看該作者
The EMM and the Spectral Analysis of a Non Self-adjoint Hamiltonian on an Infinite Dimensional Hilbce. The presented operator has real eigenvalues and can be diagonalized when it is expressed in terms of pseudo-bosons, which do not behave as ordinary bosons under the adjoint transformation, but obey the Weil-Heisenberg commutation relations.
34#
發(fā)表于 2025-3-27 09:42:07 | 只看該作者
Bessel Sequences, Riesz-Like Bases and Operators in Triplets of Hilbert Spaces,med in a previous paper. It is shown, in particular, that every .-independent, complete (total) Bessel sequence is a (strict) Riesz-like basis in a convenient triplet of Hilbert spaces. An application to non self-adjoint Schr?dinger-type operators is considered. Moreover, some of the simplest operat
35#
發(fā)表于 2025-3-27 14:13:07 | 只看該作者
36#
發(fā)表于 2025-3-27 20:01:22 | 只看該作者
Mathematical and Physical Meaning of the Crossings of Energy Levels in ,-Symmetric Systems,ses through one of its energy-crossing points . Kato’s exceptional points (EP), its physical interpretation may . change even when the crossing energies themselves do not complexify. The anomalous physical phase-transition mechanism of the change is revealed, attributed to the EP-related mathematics
37#
發(fā)表于 2025-3-28 00:23:05 | 只看該作者
38#
發(fā)表于 2025-3-28 03:54:12 | 只看該作者
39#
發(fā)表于 2025-3-28 07:30:47 | 只看該作者
40#
發(fā)表于 2025-3-28 14:24:12 | 只看該作者
Physical Aspect of Exceptional Point in the Liouvillian Dynamics for a Quantum Lorentz Gas,s paper is the weakly-coupled one-dimensional quantum perfect Lorentz gas. The effective Liouvillian for the system derived by applying the Brillouin-Wigner-Feshbach formalism takes non-Hermitian form due to resonance singularity, thus its spectra take complex values. We find that the complex spectr
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 06:41
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
车险| 宜都市| 台南县| 东港市| 台山市| 易门县| 岳阳县| 夏邑县| 双峰县| 禄丰县| 石棉县| 石台县| 昆明市| 河源市| 沂源县| 正定县| 霍城县| 琼结县| 栖霞市| 清原| 宁南县| 莒南县| 东光县| 犍为县| 河东区| 新郑市| 昌宁县| 嘉义市| 牙克石市| 丹寨县| 和政县| 讷河市| 大足县| 社会| 滦南县| 乌拉特中旗| 德令哈市| 甘德县| 宁明县| 保靖县| 昌乐县|