找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Euclidean Geometries; János Bolyai Memoria András Prékopa,Emil Molnár Book 2006 Springer-Verlag US 2006 Applications in physics.Axiomat

[復制鏈接]
查看: 22180|回復: 51
樓主
發(fā)表于 2025-3-21 17:10:22 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Non-Euclidean Geometries
副標題János Bolyai Memoria
編輯András Prékopa,Emil Molnár
視頻videohttp://file.papertrans.cn/667/666901/666901.mp4
概述Focuses specifically on the contributions of János Bolyai to non-Euclidean geometry.Includes supplementary material:
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Non-Euclidean Geometries; János Bolyai Memoria András Prékopa,Emil Molnár Book 2006 Springer-Verlag US 2006 Applications in physics.Axiomat
描述."From nothing I have created a new different world," wrote János Bolyai to his father, Wolgang Bolyai, on November 3, 1823, to let him know his discovery of non-Euclidean geometry, as we call it today. The results of Bolyai and the co-discoverer, the Russian Lobachevskii, changed the course of mathematics, opened the way for modern physical theories of the twentieth century, and had an impact on the history of human culture...The papers in this volume, which commemorates the 200th anniversary of the birth of János Bolyai, were written by leading scientists of non-Euclidean geometry, its history, and its applications. Some of the papers present new discoveries about the life and works of János Bolyai and the history of non-Euclidean geometry, others deal with geometrical axiomatics; polyhedra; fractals; hyperbolic, Riemannian and discrete geometry; tilings; visualization; and applications in physics..
出版日期Book 2006
關鍵詞Applications in physics; Axiomatics; History of Mathematics; History of geometry; János Bolyai; Non-Eucli
版次1
doihttps://doi.org/10.1007/0-387-29555-0
isbn_softcover978-1-4614-9771-4
isbn_ebook978-0-387-29555-8
copyrightSpringer-Verlag US 2006
The information of publication is updating

書目名稱Non-Euclidean Geometries影響因子(影響力)




書目名稱Non-Euclidean Geometries影響因子(影響力)學科排名




書目名稱Non-Euclidean Geometries網(wǎng)絡公開度




書目名稱Non-Euclidean Geometries網(wǎng)絡公開度學科排名




書目名稱Non-Euclidean Geometries被引頻次




書目名稱Non-Euclidean Geometries被引頻次學科排名




書目名稱Non-Euclidean Geometries年度引用




書目名稱Non-Euclidean Geometries年度引用學科排名




書目名稱Non-Euclidean Geometries讀者反饋




書目名稱Non-Euclidean Geometries讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:03:29 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:32:29 | 只看該作者
地板
發(fā)表于 2025-3-22 06:14:08 | 只看該作者
5#
發(fā)表于 2025-3-22 10:36:23 | 只看該作者
6#
發(fā)表于 2025-3-22 16:33:57 | 只看該作者
Flexible Octahedra in the Hyperbolic Space flexible of orders 1 or 2 is quite the same as in the Euclidean case. Also Euclidean results concerning continuously flexible octahedra remain valid in hyperbolic geometry: There are at least three types of continuously flexible octahedra in #x210D;.; the line-symmetric Type 1, Type 2 with planar s
7#
發(fā)表于 2025-3-22 19:28:32 | 只看該作者
A Volume Formula for Generalised Hyperbolic Tetrahedrapolar truncation at the vertices lying outside the space. In this paper it is proved that a volume formula for ordinary hyperbolic tetrahedra devised by J. Murakami and M. Yano can be applied to such generalised tetrahedra. There are two key tools for the proof; one is the so-called Schl?fli’s diffe
8#
發(fā)表于 2025-3-22 23:32:04 | 只看該作者
Jeremy Graychgeführten Therapiestunde mit einem magersüchtigen M?dchen. Beim gemeinsamen Nachdenken über den gerade erlebten therapeutischen Proze? stie?en wir auf das wohl zentralste Konzept zur Beschreibung menschlichen Zusammenlebens, vermutlich gar allen Zusammenlebens: das Konzept des Liebens. Unser zun?c
9#
發(fā)表于 2025-3-23 05:06:50 | 只看該作者
Elemér Kisschgeführten Therapiestunde mit einem magersüchtigen M?dchen. Beim gemeinsamen Nachdenken über den gerade erlebten therapeutischen Proze? stie?en wir auf das wohl zentralste Konzept zur Beschreibung menschlichen Zusammenlebens, vermutlich gar allen Zusammenlebens: das Konzept des Liebens. Unser zun?c
10#
發(fā)表于 2025-3-23 07:19:03 | 只看該作者
chgeführten Therapiestunde mit einem magersüchtigen M?dchen. Beim gemeinsamen Nachdenken über den gerade erlebten therapeutischen Proze? stie?en wir auf das wohl zentralste Konzept zur Beschreibung menschlichen Zusammenlebens, vermutlich gar allen Zusammenlebens: das Konzept des Liebens. Unser zun?c
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 21:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
拉萨市| 元朗区| 万宁市| 咸宁市| 九江市| 海林市| 嵊州市| 兰考县| 炉霍县| 江永县| 张家港市| 喀喇| 固原市| 晴隆县| 沙田区| 富锦市| 朝阳县| 饶阳县| 阿合奇县| 沁阳市| 镇沅| 海淀区| 徐汇区| 昌图县| 开江县| 平原县| 白朗县| 彭水| 梁山县| 镇赉县| 藁城市| 乌苏市| 涿州市| 丹凤县| 霍林郭勒市| 凤凰县| 陕西省| 安岳县| 土默特右旗| 平遥县| 磐安县|