找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Commutative Harmonic Analysis and Lie Groups; Proceedings of the I Jacques Carmona,Patrick Delorme,M.I.T. Conference proceedings 1987 S

[復(fù)制鏈接]
查看: 18416|回復(fù): 53
樓主
發(fā)表于 2025-3-21 16:41:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Non-Commutative Harmonic Analysis and Lie Groups
副標(biāo)題Proceedings of the I
編輯Jacques Carmona,Patrick Delorme,M.I.T.
視頻videohttp://file.papertrans.cn/667/666870/666870.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Non-Commutative Harmonic Analysis and Lie Groups; Proceedings of the I Jacques Carmona,Patrick Delorme,M.I.T. Conference proceedings 1987 S
描述All the papers in this volume are research papers presenting new results. Most of the results concern semi-simple Lie groups and non-Riemannian symmetric spaces: unitarisation, discrete series characters, multiplicities, orbital integrals. Some, however, also apply to related fields such as Dirac operators and characters in the general case.
出版日期Conference proceedings 1987
關(guān)鍵詞Dirac; Invariant; Lie; Volume; algorithms; character; commutative property; distribution; function; functions
版次1
doihttps://doi.org/10.1007/BFb0073014
isbn_softcover978-3-540-17701-2
isbn_ebook978-3-540-47775-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1987
The information of publication is updating

書目名稱Non-Commutative Harmonic Analysis and Lie Groups影響因子(影響力)




書目名稱Non-Commutative Harmonic Analysis and Lie Groups影響因子(影響力)學(xué)科排名




書目名稱Non-Commutative Harmonic Analysis and Lie Groups網(wǎng)絡(luò)公開度




書目名稱Non-Commutative Harmonic Analysis and Lie Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Non-Commutative Harmonic Analysis and Lie Groups被引頻次




書目名稱Non-Commutative Harmonic Analysis and Lie Groups被引頻次學(xué)科排名




書目名稱Non-Commutative Harmonic Analysis and Lie Groups年度引用




書目名稱Non-Commutative Harmonic Analysis and Lie Groups年度引用學(xué)科排名




書目名稱Non-Commutative Harmonic Analysis and Lie Groups讀者反饋




書目名稱Non-Commutative Harmonic Analysis and Lie Groups讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:32:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:24:34 | 只看該作者
0075-8434 ian symmetric spaces: unitarisation, discrete series characters, multiplicities, orbital integrals. Some, however, also apply to related fields such as Dirac operators and characters in the general case.978-3-540-17701-2978-3-540-47775-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
地板
發(fā)表于 2025-3-22 06:58:51 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/n/image/666870.jpg
5#
發(fā)表于 2025-3-22 11:04:15 | 只看該作者
Conference proceedings 1987All the papers in this volume are research papers presenting new results. Most of the results concern semi-simple Lie groups and non-Riemannian symmetric spaces: unitarisation, discrete series characters, multiplicities, orbital integrals. Some, however, also apply to related fields such as Dirac operators and characters in the general case.
6#
發(fā)表于 2025-3-22 16:49:53 | 只看該作者
https://doi.org/10.1007/BFb0073014Dirac; Invariant; Lie; Volume; algorithms; character; commutative property; distribution; function; functions
7#
發(fā)表于 2025-3-22 19:54:43 | 只看該作者
nellboote zuverl?ssige Unterlagen für die zweckm??ige Formgebung beim Entwurf und die rechnerische Ermittlung der erforderlichen Antriebsleistung zu liefern. Für diese Fahrzeuge sind bisher nur wenige brauchbare Unterlagen zu diesem Zweck bekannt. Sie sind aber in diesem Falle besonders wichtig, da
8#
發(fā)表于 2025-3-23 01:00:46 | 只看該作者
9#
發(fā)表于 2025-3-23 04:16:57 | 只看該作者
10#
發(fā)表于 2025-3-23 07:50:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
叙永县| 昂仁县| 华亭县| 平乡县| 河间市| 潢川县| 凌云县| 宝丰县| 宕昌县| 探索| 麟游县| 清河县| 慈溪市| 新巴尔虎右旗| 登封市| 高淳县| 西昌市| 新野县| 清河县| 宜宾市| 阿荣旗| 临城县| 岢岚县| 龙口市| 营山县| 从江县| 孝义市| 秦安县| 湘阴县| 博爱县| 天全县| 秦皇岛市| 石首市| 汪清县| 翼城县| 霍林郭勒市| 尉犁县| 嘉善县| 林州市| 南华县| 白水县|