找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Bloch Band Theory of Non-Hermitian Systems; Kazuki Yokomizo Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: EFFCT
21#
發(fā)表于 2025-3-25 04:54:27 | 只看該作者
Non-Hermitian Open Chain and Periodic Chain,el, we discuss how to determine the generalized Brillouin zone. Then we analytically show the difference between the energy spectrum under an open boundary condition and that under a periodic boundary condition, which is induced by the non-Hermitian skin effect.
22#
發(fā)表于 2025-3-25 09:19:08 | 只看該作者
Non-Bloch Band Theory in Bosonic Bogoliubov-de Gennes Systems,itian skin effect from the generalized Brillouin zone. As an example, we investigate the bosonic Kitaev-Majorana chain. We show that this system exhibits infinitesimal instability and reentrant behavior of the non-Hermitian skin effect.
23#
發(fā)表于 2025-3-25 13:44:15 | 只看該作者
Springer Theseshttp://image.papertrans.cn/n/image/666857.jpg
24#
發(fā)表于 2025-3-25 15:49:23 | 只看該作者
25#
發(fā)表于 2025-3-25 22:49:55 | 只看該作者
Introduction,In this chapter, we briefly review the history of studies on non-Hermitian systems. Then we point out the discovery of the non-Hermitian skin effect. Finally, we explain the organization of this thesis.
26#
發(fā)表于 2025-3-26 00:23:42 | 只看該作者
27#
發(fā)表于 2025-3-26 07:03:27 | 只看該作者
28#
發(fā)表于 2025-3-26 12:02:59 | 只看該作者
29#
發(fā)表于 2025-3-26 16:28:02 | 只看該作者
30#
發(fā)表于 2025-3-26 18:23:15 | 只看該作者
ployed with a double purpose: namely, to support iterative procedures employed in mapping specifications onto design parameters; and to allow for accurate behavioural time-domain simulation using MATLAB-like tools. The book is completed with two case studies corresponding to modulators for AM digital radio re978-1-4419-4950-9978-0-306-48194-9
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 02:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安阳市| 疏勒县| 沂源县| 洛隆县| 鹿泉市| 建始县| 开阳县| 岳西县| 景宁| 黄大仙区| 广河县| 年辖:市辖区| 固安县| 凤冈县| 东山县| 千阳县| 博白县| 高尔夫| 白玉县| 河曲县| 宁乡县| 石家庄市| 石林| 九江县| 久治县| 库伦旗| 扶余县| 平乐县| 岫岩| 郸城县| 莱芜市| 海丰县| 彰化县| 鸡东县| 金昌市| 彩票| 江西省| 七台河市| 邵阳县| 崇礼县| 仪征市|