找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nilpotent Orbits, Primitive Ideals, and Characteristic Classes; A Geometric Perspect W. Borho,J-L. Brylinski,R. MacPherson Book 1989 Birkh?

[復(fù)制鏈接]
查看: 9723|回復(fù): 40
樓主
發(fā)表于 2025-3-21 18:45:52 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Nilpotent Orbits, Primitive Ideals, and Characteristic Classes
副標(biāo)題A Geometric Perspect
編輯W. Borho,J-L. Brylinski,R. MacPherson
視頻videohttp://file.papertrans.cn/667/666577/666577.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Nilpotent Orbits, Primitive Ideals, and Characteristic Classes; A Geometric Perspect W. Borho,J-L. Brylinski,R. MacPherson Book 1989 Birkh?
描述1. The Subject Matter. Consider a complex semisimple Lie group G with Lie algebra g and Weyl group W. In this book, we present a geometric perspective on the following circle of ideas: polynomials The "vertices" of this graph are some of the most important objects in representation theory. Each has a theory in its own right, and each has had its own independent historical development. - A nilpotent orbit is an orbit of the adjoint action of G on g which contains the zero element of g in its closure. (For the special linear group 2 G = SL(n,C), whose Lie algebra 9 is all n x n matrices with trace zero, an adjoint orbit consists of all matrices with a given Jordan canonical form; such an orbit is nilpotent if the Jordan form has only zeros on the diagonal. In this case, the nilpotent orbits are classified by partitions of n, given by the sizes of the Jordan blocks.) The closures of the nilpotent orbits are singular in general, and understanding their singularities is an important problem. - The classification of irreducible Weyl group representations is quite old.
出版日期Book 1989
關(guān)鍵詞Algebra; Cohomology; Group representation; Irreducibility; cls; homomorphism; ring theory
版次1
doihttps://doi.org/10.1007/978-1-4612-4558-2
isbn_softcover978-1-4612-8910-4
isbn_ebook978-1-4612-4558-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Boston, Inc. 1989
The information of publication is updating

書目名稱Nilpotent Orbits, Primitive Ideals, and Characteristic Classes影響因子(影響力)




書目名稱Nilpotent Orbits, Primitive Ideals, and Characteristic Classes影響因子(影響力)學(xué)科排名




書目名稱Nilpotent Orbits, Primitive Ideals, and Characteristic Classes網(wǎng)絡(luò)公開度




書目名稱Nilpotent Orbits, Primitive Ideals, and Characteristic Classes網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nilpotent Orbits, Primitive Ideals, and Characteristic Classes被引頻次




書目名稱Nilpotent Orbits, Primitive Ideals, and Characteristic Classes被引頻次學(xué)科排名




書目名稱Nilpotent Orbits, Primitive Ideals, and Characteristic Classes年度引用




書目名稱Nilpotent Orbits, Primitive Ideals, and Characteristic Classes年度引用學(xué)科排名




書目名稱Nilpotent Orbits, Primitive Ideals, and Characteristic Classes讀者反饋




書目名稱Nilpotent Orbits, Primitive Ideals, and Characteristic Classes讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:11:48 | 只看該作者
Book 1989 the diagonal. In this case, the nilpotent orbits are classified by partitions of n, given by the sizes of the Jordan blocks.) The closures of the nilpotent orbits are singular in general, and understanding their singularities is an important problem. - The classification of irreducible Weyl group representations is quite old.
板凳
發(fā)表于 2025-3-22 02:19:49 | 只看該作者
Characteristic Classes and Primitive Ideals,e of weight λ). Then the center of .(.) is a polynomial ring in dim (T) variables (Harish—Chandra, Chevalley); this center acts by a character on L(λ) which is denoted .; we note that by Harish—Chandra’s theorem, .=. if and only if . = w.λ, for some Weyl group element w ∈ W, where the “shifted Weyl
地板
發(fā)表于 2025-3-22 08:05:00 | 只看該作者
0743-1643 of the nilpotent orbits are singular in general, and understanding their singularities is an important problem. - The classification of irreducible Weyl group representations is quite old.978-1-4612-8910-4978-1-4612-4558-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
5#
發(fā)表于 2025-3-22 08:46:47 | 只看該作者
6#
發(fā)表于 2025-3-22 16:36:37 | 只看該作者
7#
發(fā)表于 2025-3-22 18:52:50 | 只看該作者
W. Borho,J-L. Brylinski,R. MacPhersonhors, the members of the Local Committee, Scientific Committee, Organizing Committee, and the sponsors (Texas A&M University ofQatar, AIR Institute and the IoT Digital Innovation Hub) for their hard work and dedication..978-3-030-78900-8978-3-030-78901-5Series ISSN 2367-3370 Series E-ISSN 2367-3389
8#
發(fā)表于 2025-3-23 01:15:32 | 只看該作者
9#
發(fā)表于 2025-3-23 05:02:46 | 只看該作者
10#
發(fā)表于 2025-3-23 08:53:22 | 只看該作者
W. Borho,J-L. Brylinski,R. MacPhersonmillion population. India too is experiencing the upsurge of population especially in urban areas. To accommodate and resolve the problems associated with rapid urbanization, the Government of India has planned to build hundred new Smart cities.Building Smart cities in India is challenging yet imper
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洞口县| 光山县| 铜鼓县| 恩平市| 饶平县| 黄陵县| 罗田县| 大安市| 海晏县| 灵寿县| 都昌县| 都安| 改则县| 洛扎县| 莱西市| 云龙县| 三穗县| 呼伦贝尔市| 安吉县| 舞阳县| 屏南县| 万载县| 林周县| 肥城市| 南郑县| 龙江县| 保康县| 论坛| 吉首市| 河北省| 河南省| 长汀县| 宣武区| 道孚县| 无为县| 资讯 | 石林| 平安县| 延长县| 涟源市| 芮城县|