找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Next-Generation Machine Learning with Spark; Covers XGBoost, Ligh Butch Quinto Book 2020 Butch Quinto 2020 Spark.Big data.Machine Learning.

[復(fù)制鏈接]
查看: 17286|回復(fù): 40
樓主
發(fā)表于 2025-3-21 18:49:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Next-Generation Machine Learning with Spark
副標(biāo)題Covers XGBoost, Ligh
編輯Butch Quinto
視頻videohttp://file.papertrans.cn/667/666264/666264.mp4
概述For the latest version of Spark and Spark MLlib.Covers powerful third-party machine learning algorithms and libraries not available in the standard Spark MLlib library such as XGBoost4J-Spark, LightGB
圖書封面Titlebook: Next-Generation Machine Learning with Spark; Covers XGBoost, Ligh Butch Quinto Book 2020 Butch Quinto 2020 Spark.Big data.Machine Learning.
描述.Access real-world documentation and examples for the Spark platform for building large-scale, enterprise-grade machine learning applications..The past decade has seen an astonishing series of advances in machine learning. These breakthroughs are disrupting our everyday life and making an impact across every industry...Next-Generation Machine Learning with Spark.?provides?a gentle introduction to Spark and Spark MLlib and advances to more powerful, third-party machine learning algorithms and libraries beyond what is available in the standard Spark MLlib library. By the end of this book, you will be able to apply your knowledge to real-world use cases through dozens of practical examples and insightful explanations.?..What You Will Learn.Be introduced to machine learning, Spark, and Spark MLlib 2.4.x.Achieve lightning-fast gradient boosting on Spark with the XGBoost4J-Spark and LightGBM libraries.Detect anomalies with the Isolation Forest algorithm for Spark.Use the Spark NLP and Stanford CoreNLP libraries that support multiple languages.Optimize your ML workload with the Alluxio in-memory data accelerator for Spark.Use GraphX and GraphFrames for Graph Analysis.Perform image recogni
出版日期Book 2020
關(guān)鍵詞Spark; Big data; Machine Learning; Spark ML; Spark MLlib; Spark Machine Learning; XGBoost; LightGBM; NLP; Nat
版次1
doihttps://doi.org/10.1007/978-1-4842-5669-5
isbn_softcover978-1-4842-5668-8
isbn_ebook978-1-4842-5669-5
copyrightButch Quinto 2020
The information of publication is updating

書目名稱Next-Generation Machine Learning with Spark影響因子(影響力)




書目名稱Next-Generation Machine Learning with Spark影響因子(影響力)學(xué)科排名




書目名稱Next-Generation Machine Learning with Spark網(wǎng)絡(luò)公開度




書目名稱Next-Generation Machine Learning with Spark網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Next-Generation Machine Learning with Spark被引頻次




書目名稱Next-Generation Machine Learning with Spark被引頻次學(xué)科排名




書目名稱Next-Generation Machine Learning with Spark年度引用




書目名稱Next-Generation Machine Learning with Spark年度引用學(xué)科排名




書目名稱Next-Generation Machine Learning with Spark讀者反饋




書目名稱Next-Generation Machine Learning with Spark讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:03:11 | 只看該作者
Book 2020t decade has seen an astonishing series of advances in machine learning. These breakthroughs are disrupting our everyday life and making an impact across every industry...Next-Generation Machine Learning with Spark.?provides?a gentle introduction to Spark and Spark MLlib and advances to more powerfu
板凳
發(fā)表于 2025-3-22 01:28:41 | 只看該作者
tandard Spark MLlib library such as XGBoost4J-Spark, LightGB.Access real-world documentation and examples for the Spark platform for building large-scale, enterprise-grade machine learning applications..The past decade has seen an astonishing series of advances in machine learning. These breakthroug
地板
發(fā)表于 2025-3-22 06:11:14 | 只看該作者
Deep Learning,otten powerful enough that tasks that seemed computationally impossible just a few years ago are now routinely performed on multi-GPU cloud instances or clusters of inexpensive machines. This has allowed numerous innovations in the field of artificial intelligence to develop at a rate that was not possible in the past.
5#
發(fā)表于 2025-3-22 12:20:25 | 只看該作者
Supervised Learning,sification or regression. Regression is for predicting continuous values such as price, temperature, or distance, while classification is for predicting categories such as yes or no, spam or not spam, or malignant or benign.
6#
發(fā)表于 2025-3-22 16:43:29 | 只看該作者
7#
發(fā)表于 2025-3-22 17:30:49 | 只看該作者
Recommendations,ba, Walmart, and Target, provides some sort of personalized recommendation based on customer behavior. Streaming services such as Netflix, Hulu, and Spotify provide movie or music recommendations based on user tastes and preferences.
8#
發(fā)表于 2025-3-22 22:10:41 | 只看該作者
9#
發(fā)表于 2025-3-23 03:32:38 | 只看該作者
10#
發(fā)表于 2025-3-23 08:33:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 17:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湟中县| 出国| 谢通门县| 长白| 滨州市| 集贤县| 虞城县| 喀什市| 太白县| 疏附县| 布拖县| 泊头市| 娄烦县| 苗栗县| 璧山县| 临桂县| 蒙城县| 农安县| 乌鲁木齐县| 宁陕县| 澄迈县| 闸北区| 乳源| 马鞍山市| 正定县| 淮阳县| 大名县| 木兰县| 吴堡县| 松溪县| 临颍县| 广宗县| 普安县| 崇礼县| 灵丘县| 英吉沙县| 拜泉县| 东辽县| 盐山县| 通州区| 华安县|