找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Next-Generation Business Intelligence Software with Silverlight 3; Bart Czernicki Book 2010 Bart Czernicki 2010 Internet.computer.performa

[復(fù)制鏈接]
樓主: Causalgia
11#
發(fā)表于 2025-3-23 10:06:01 | 只看該作者
12#
發(fā)表于 2025-3-23 14:02:31 | 只看該作者
Enhancing Visual Intelligence in Silverlight,esentation from a charting perspective. In this chapter, you will learn how visual intelligence can be enhanced using unique characteristics of Silverlight technology to visualize almost any type of analytical data assets for different environments. This chapter will incorporate the knowledge in the
13#
發(fā)表于 2025-3-23 21:28:11 | 只看該作者
Integrating with Business Intelligence Systems, compelling argument that Silverlight can successfully present BI 2.0 content. It is time to cover how to design Silverlight applications so they can be successfully integrated and deployed across BI systems. In this chapter, you will learn what enterprise components are required to be able to deplo
14#
發(fā)表于 2025-3-23 23:39:14 | 只看該作者
15#
發(fā)表于 2025-3-24 03:43:22 | 只看該作者
Silverlight As a Business Intelligence Client,This chapter introduces Silverlight as a potential world-class BI client. In the first two chapters, you learned about BI 2.0 concepts and Silverlight RIA technology. It is time to see how the combination of BI 2.0 and Silverlight can form very powerful applications.
16#
發(fā)表于 2025-3-24 07:18:29 | 只看該作者
17#
發(fā)表于 2025-3-24 11:40:03 | 只看該作者
Introduction to Data Visualizations,This chapter is the first chapter in a three-part series about data visualizations.
18#
發(fā)表于 2025-3-24 18:43:10 | 只看該作者
19#
發(fā)表于 2025-3-24 22:07:41 | 只看該作者
20#
發(fā)表于 2025-3-25 02:27:59 | 只看該作者
Predictive Analytics (What-If Modeling),This chapter covers creating and applying BI models that are forward looking. In the past chapters, we focused on BI concepts that applied to past or current data. However, BI 2.0 applications can extend the functionality of that data by injecting analytical models that can leverage historical data in order to predict future outcomes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 16:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
讷河市| 万年县| 普格县| 怀远县| 德格县| 咸阳市| 桑植县| 望城县| 老河口市| 河曲县| 四会市| 巴彦淖尔市| 汉源县| 长汀县| 阿合奇县| 玛纳斯县| 方正县| 甘孜县| 义乌市| 从化市| 富民县| 江山市| 图们市| 云安县| 黄大仙区| 高密市| 美姑县| 岑溪市| 方城县| 亚东县| 萨嘎县| 项城市| 南城县| 英山县| 洛阳市| 弥渡县| 昌宁县| 中卫市| 新源县| 霍林郭勒市| 邻水|