找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Next-Generation Business Intelligence Software with Silverlight 3; Bart Czernicki Book 2010 Bart Czernicki 2010 Internet.computer.performa

[復(fù)制鏈接]
樓主: Causalgia
11#
發(fā)表于 2025-3-23 10:06:01 | 只看該作者
12#
發(fā)表于 2025-3-23 14:02:31 | 只看該作者
Enhancing Visual Intelligence in Silverlight,esentation from a charting perspective. In this chapter, you will learn how visual intelligence can be enhanced using unique characteristics of Silverlight technology to visualize almost any type of analytical data assets for different environments. This chapter will incorporate the knowledge in the
13#
發(fā)表于 2025-3-23 21:28:11 | 只看該作者
Integrating with Business Intelligence Systems, compelling argument that Silverlight can successfully present BI 2.0 content. It is time to cover how to design Silverlight applications so they can be successfully integrated and deployed across BI systems. In this chapter, you will learn what enterprise components are required to be able to deplo
14#
發(fā)表于 2025-3-23 23:39:14 | 只看該作者
15#
發(fā)表于 2025-3-24 03:43:22 | 只看該作者
Silverlight As a Business Intelligence Client,This chapter introduces Silverlight as a potential world-class BI client. In the first two chapters, you learned about BI 2.0 concepts and Silverlight RIA technology. It is time to see how the combination of BI 2.0 and Silverlight can form very powerful applications.
16#
發(fā)表于 2025-3-24 07:18:29 | 只看該作者
17#
發(fā)表于 2025-3-24 11:40:03 | 只看該作者
Introduction to Data Visualizations,This chapter is the first chapter in a three-part series about data visualizations.
18#
發(fā)表于 2025-3-24 18:43:10 | 只看該作者
19#
發(fā)表于 2025-3-24 22:07:41 | 只看該作者
20#
發(fā)表于 2025-3-25 02:27:59 | 只看該作者
Predictive Analytics (What-If Modeling),This chapter covers creating and applying BI models that are forward looking. In the past chapters, we focused on BI concepts that applied to past or current data. However, BI 2.0 applications can extend the functionality of that data by injecting analytical models that can leverage historical data in order to predict future outcomes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 17:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
进贤县| 澄城县| 施秉县| 泽库县| 隆昌县| 江阴市| 获嘉县| 鸡西市| 永定县| 南木林县| 凌云县| 顺昌县| 盐边县| 双辽市| 新余市| 康定县| 辽中县| 华池县| 九龙县| 濮阳市| 丹寨县| 会昌县| 米林县| 满洲里市| 商南县| 安康市| 格尔木市| 重庆市| 明水县| 潮安县| 晋城| 高邑县| 叶城县| 新蔡县| 保定市| 通江县| 舟山市| 青海省| 安泽县| 斗六市| 乃东县|