找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Newton’s Method: an Updated Approach of Kantorovich’s Theory; José Antonio Ezquerro Fernández,Miguel ángel Herná Book 2017 Springer Intern

[復(fù)制鏈接]
查看: 35497|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:39:40 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory
編輯José Antonio Ezquerro Fernández,Miguel ángel Herná
視頻videohttp://file.papertrans.cn/667/666174/666174.mp4
概述Up-to-date account of Kantorovich′s theory for Newton′s method.Starts with a detailed presentation of Kantorovich′s approach and ends with new results and alternative approaches.Contains many numerica
叢書名稱Frontiers in Mathematics
圖書封面Titlebook: Newton’s Method: an Updated Approach of Kantorovich’s Theory;  José Antonio Ezquerro Fernández,Miguel ángel Herná Book 2017 Springer Intern
描述.This book shows the importance of studying semilocal convergence in iterative methods through Newton‘s method and addresses the most important aspects of the Kantorovich‘s theory including implicated studies. Kantorovich‘s theory for Newton‘s method used techniques of functional analysis to prove the semilocal convergence of the method by means of the well-known majorant principle. To gain a deeper understanding of these techniques the authors return to the beginning and present a deep-detailed approach of Kantorovich‘s theory for Newton‘s method, where they include old results, for a historical perspective and for comparisons with new results, refine old results, and prove their most relevant results, where alternative approaches leading to new sufficient semilocal convergence criteria for Newton‘s method are given. The book contains many numerical examples involving nonlinear integral equations, two boundary value problems and systems of nonlinear equations related to numerous physical phenomena. The book is addressed to researchers in computational sciences, in general, and in approximation of solutions of nonlinear problems, in particular..
出版日期Book 2017
關(guān)鍵詞Newton’s Method; Kantorovich’s Theory; Semilocal Convergence; Majorizing Sequence; Error Estimates; Order
版次1
doihttps://doi.org/10.1007/978-3-319-55976-6
isbn_softcover978-3-319-55975-9
isbn_ebook978-3-319-55976-6Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory影響因子(影響力)




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory影響因子(影響力)學(xué)科排名




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory網(wǎng)絡(luò)公開度




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory被引頻次




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory被引頻次學(xué)科排名




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory年度引用




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory年度引用學(xué)科排名




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory讀者反饋




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:52:10 | 只看該作者
Book 2017s of the Kantorovich‘s theory including implicated studies. Kantorovich‘s theory for Newton‘s method used techniques of functional analysis to prove the semilocal convergence of the method by means of the well-known majorant principle. To gain a deeper understanding of these techniques the authors r
板凳
發(fā)表于 2025-3-22 04:23:28 | 只看該作者
1660-8046 ew results and alternative approaches.Contains many numerica.This book shows the importance of studying semilocal convergence in iterative methods through Newton‘s method and addresses the most important aspects of the Kantorovich‘s theory including implicated studies. Kantorovich‘s theory for Newto
地板
發(fā)表于 2025-3-22 05:37:57 | 只看該作者
haffung,Produktion und Distribution zu schaffen. SCM hat zum Ziel, die Kosten und Durchlaufzeiten in der Lieferkette zu senken sowie die Lieferperformance und Kundenzufriedenheit zu erh?hen. Dies erfordert die optimierte Zusammenarbeit in der Wertsch?pfungskette mit einem durchg?ngigen Informationsf
5#
發(fā)表于 2025-3-22 09:30:18 | 只看該作者
José Antonio Ezquerro Fernández,Miguel ángel Hernández Verónen vertreten. Fast alle Unternehmensberatungen beziehen logistikrelevante über- gungen in ihre Untersuchungen ein. Universit?ten, Fachhochschulen und Fa- schulen bieten theorie- und praxisorientierte Bildungsg?nge zur Logistik an und die Zahl der entsprechenden Publikationen steigt exponentiell. Neb
6#
發(fā)表于 2025-3-22 14:27:49 | 只看該作者
7#
發(fā)表于 2025-3-22 21:07:19 | 只看該作者
sich zunehmend zum entscheidenden Wettbewerbsfaktor. Ausgehend von Methoden zur Analyse des Ist-Zustandes und zur Definition von Zielsystemen werden in diesem didaktisch gut konzipierten Lehrbuch alle wichtigen Konzepte des Logistikmanagements konkret, ausführlich und leicht verst?ndlich erkl?rt. Z
8#
發(fā)表于 2025-3-22 23:44:54 | 只看該作者
The classic theory of Kantorovich,le of Banach, and later improved to semilocal quadratic convergence in 1948/49 (the Newton-Kantorovich theorem) [47, 49]. Also in 1949, Mysovskikh [61] gave a much simpler independent proof of semilocal quadratic convergence under slightly different theoretical assumptions, which are exploited in mo
9#
發(fā)表于 2025-3-23 01:31:05 | 只看該作者
Convergence conditions on the second derivative of the operator,nditions for the operator involved. In Chapter 1, we have seen that the application of the majorant principle of Kantorovich is not easy if condition (A2) is not satisfied. For this, we have introduced a more general definition of majorant function than that given by Kantorovich and, from Theorem 1.
10#
發(fā)表于 2025-3-23 09:33:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊通| 博客| 峨眉山市| 开平市| 甘孜县| 浙江省| 江都市| 化州市| 仙居县| 长武县| 平原县| 安新县| 宁南县| 兰溪市| 金昌市| 普陀区| 红桥区| 湄潭县| 吉水县| 白朗县| 高平市| 济源市| 德格县| 喀什市| 濉溪县| 泸溪县| 佛坪县| 体育| 于都县| 永平县| 辛集市| 冷水江市| 万源市| 永寿县| 惠州市| 韶关市| 莲花县| 凤凰县| 东宁县| 上林县| 石台县|