找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Newton’s Method: an Updated Approach of Kantorovich’s Theory; José Antonio Ezquerro Fernández,Miguel ángel Herná Book 2017 Springer Intern

[復(fù)制鏈接]
查看: 35497|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:39:40 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory
編輯José Antonio Ezquerro Fernández,Miguel ángel Herná
視頻videohttp://file.papertrans.cn/667/666174/666174.mp4
概述Up-to-date account of Kantorovich′s theory for Newton′s method.Starts with a detailed presentation of Kantorovich′s approach and ends with new results and alternative approaches.Contains many numerica
叢書名稱Frontiers in Mathematics
圖書封面Titlebook: Newton’s Method: an Updated Approach of Kantorovich’s Theory;  José Antonio Ezquerro Fernández,Miguel ángel Herná Book 2017 Springer Intern
描述.This book shows the importance of studying semilocal convergence in iterative methods through Newton‘s method and addresses the most important aspects of the Kantorovich‘s theory including implicated studies. Kantorovich‘s theory for Newton‘s method used techniques of functional analysis to prove the semilocal convergence of the method by means of the well-known majorant principle. To gain a deeper understanding of these techniques the authors return to the beginning and present a deep-detailed approach of Kantorovich‘s theory for Newton‘s method, where they include old results, for a historical perspective and for comparisons with new results, refine old results, and prove their most relevant results, where alternative approaches leading to new sufficient semilocal convergence criteria for Newton‘s method are given. The book contains many numerical examples involving nonlinear integral equations, two boundary value problems and systems of nonlinear equations related to numerous physical phenomena. The book is addressed to researchers in computational sciences, in general, and in approximation of solutions of nonlinear problems, in particular..
出版日期Book 2017
關(guān)鍵詞Newton’s Method; Kantorovich’s Theory; Semilocal Convergence; Majorizing Sequence; Error Estimates; Order
版次1
doihttps://doi.org/10.1007/978-3-319-55976-6
isbn_softcover978-3-319-55975-9
isbn_ebook978-3-319-55976-6Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory影響因子(影響力)




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory影響因子(影響力)學(xué)科排名




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory網(wǎng)絡(luò)公開度




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory被引頻次




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory被引頻次學(xué)科排名




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory年度引用




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory年度引用學(xué)科排名




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory讀者反饋




書目名稱Newton’s Method: an Updated Approach of Kantorovich’s Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:52:10 | 只看該作者
Book 2017s of the Kantorovich‘s theory including implicated studies. Kantorovich‘s theory for Newton‘s method used techniques of functional analysis to prove the semilocal convergence of the method by means of the well-known majorant principle. To gain a deeper understanding of these techniques the authors r
板凳
發(fā)表于 2025-3-22 04:23:28 | 只看該作者
1660-8046 ew results and alternative approaches.Contains many numerica.This book shows the importance of studying semilocal convergence in iterative methods through Newton‘s method and addresses the most important aspects of the Kantorovich‘s theory including implicated studies. Kantorovich‘s theory for Newto
地板
發(fā)表于 2025-3-22 05:37:57 | 只看該作者
haffung,Produktion und Distribution zu schaffen. SCM hat zum Ziel, die Kosten und Durchlaufzeiten in der Lieferkette zu senken sowie die Lieferperformance und Kundenzufriedenheit zu erh?hen. Dies erfordert die optimierte Zusammenarbeit in der Wertsch?pfungskette mit einem durchg?ngigen Informationsf
5#
發(fā)表于 2025-3-22 09:30:18 | 只看該作者
José Antonio Ezquerro Fernández,Miguel ángel Hernández Verónen vertreten. Fast alle Unternehmensberatungen beziehen logistikrelevante über- gungen in ihre Untersuchungen ein. Universit?ten, Fachhochschulen und Fa- schulen bieten theorie- und praxisorientierte Bildungsg?nge zur Logistik an und die Zahl der entsprechenden Publikationen steigt exponentiell. Neb
6#
發(fā)表于 2025-3-22 14:27:49 | 只看該作者
7#
發(fā)表于 2025-3-22 21:07:19 | 只看該作者
sich zunehmend zum entscheidenden Wettbewerbsfaktor. Ausgehend von Methoden zur Analyse des Ist-Zustandes und zur Definition von Zielsystemen werden in diesem didaktisch gut konzipierten Lehrbuch alle wichtigen Konzepte des Logistikmanagements konkret, ausführlich und leicht verst?ndlich erkl?rt. Z
8#
發(fā)表于 2025-3-22 23:44:54 | 只看該作者
The classic theory of Kantorovich,le of Banach, and later improved to semilocal quadratic convergence in 1948/49 (the Newton-Kantorovich theorem) [47, 49]. Also in 1949, Mysovskikh [61] gave a much simpler independent proof of semilocal quadratic convergence under slightly different theoretical assumptions, which are exploited in mo
9#
發(fā)表于 2025-3-23 01:31:05 | 只看該作者
Convergence conditions on the second derivative of the operator,nditions for the operator involved. In Chapter 1, we have seen that the application of the majorant principle of Kantorovich is not easy if condition (A2) is not satisfied. For this, we have introduced a more general definition of majorant function than that given by Kantorovich and, from Theorem 1.
10#
發(fā)表于 2025-3-23 09:33:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武清区| 遂平县| 防城港市| 八宿县| 开远市| 军事| 清苑县| 芜湖市| 资源县| 寿光市| 凤阳县| 襄垣县| 八宿县| 石景山区| 乐山市| 东乡| 甘孜县| 行唐县| 新乐市| 东城区| 宁化县| 泗水县| 吉林市| 嘉峪关市| 沙田区| 昌江| 昭平县| 合肥市| 永善县| 湖北省| 锡林浩特市| 平利县| 罗平县| 泗阳县| 拜城县| 嘉定区| 韶关市| 湾仔区| 白山市| 福州市| 武义县|