找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Trends in One-Dimensional Dynamics; In Honour of Welingt Maria José Pacifico,Pablo Guarino Conference proceedings 2019 Springer Nature

[復(fù)制鏈接]
樓主: 方言
31#
發(fā)表于 2025-3-26 21:21:12 | 只看該作者
On the Three-Legged Accessibility Property, set for one strong foliation and the transitivity of the other one. In case the center dimension is one, we also give a criterion to obtain three-legged accessibility in a robust way. We show some applications of our results to the time-one map of Anosov flows, skew products and certain Anosov diffeomorphisms with partially hyperbolic splitting.
32#
發(fā)表于 2025-3-27 04:29:07 | 只看該作者
Adapted Metrics for Codimension One Singular Hyperbolic Flows,d its derivative . whether . is one-dimensional subspace. We show the existence of adapted metrics for singular hyperbolic set . for . vector fields if . has a partially hyperbolic splitting . where . is volume expanding, . is uniformly contracted and a one-dimensional subspace.
33#
發(fā)表于 2025-3-27 06:51:26 | 只看該作者
,The Boundaries of Golden-Mean Siegel Disks in the Complex Quadratic Hénon Family Are Not Smooth,iegel disks of sufficiently dissipative complex quadratic Hénon maps are bounded by topological circles. In this paper we investigate the geometric properties of such curves, and demonstrate that they cannot be .-smooth.
34#
發(fā)表于 2025-3-27 11:06:22 | 只看該作者
35#
發(fā)表于 2025-3-27 16:35:31 | 只看該作者
36#
發(fā)表于 2025-3-27 18:14:26 | 只看該作者
Transversality for Critical Relations of Families of Rational Maps: An Elementary Proof,In this paper we will give a short and elementary proof that critical relations unfold transversally in the space of rational maps.
37#
發(fā)表于 2025-3-28 01:27:13 | 只看該作者
38#
發(fā)表于 2025-3-28 02:58:02 | 只看該作者
39#
發(fā)表于 2025-3-28 07:59:48 | 只看該作者
40#
發(fā)表于 2025-3-28 11:50:46 | 只看該作者
New Trends in One-Dimensional Dynamics978-3-030-16833-9Series ISSN 2194-1009 Series E-ISSN 2194-1017
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 22:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宣城市| 镶黄旗| 陆川县| 西贡区| 蚌埠市| 高要市| 乌鲁木齐市| 汶上县| 海阳市| 慈溪市| 宁波市| 田林县| 林芝县| 罗甸县| 拉萨市| 毕节市| 汤阴县| 项城市| 临沭县| 称多县| 阳谷县| 六枝特区| 东乌珠穆沁旗| 临洮县| 巫溪县| 高邑县| 竹溪县| 广安市| 繁峙县| 长垣县| 天祝| 舒兰市| 田东县| 遵义市| 博野县| 东至县| 高州市| 山西省| 漳州市| 垫江县| 巴青县|