找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Trends in Database and Information Systems; ADBIS 2022 Short Pap Silvia Chiusano,Tania Cerquitelli,Ester Zumpano Conference proceedings

[復(fù)制鏈接]
樓主: 不能平庸
41#
發(fā)表于 2025-3-28 17:35:21 | 只看該作者
Jero Sch?fer,Lena Wieseformations of .(.). If .(.) = .(. + 1)/2, then .(.) is a polynomial ring ?[.., . . ., ..] and the vector fields ., . = 1, . . ., .(. ? 1), span a commutative Lie algebra of dimension .(. ? 1). Let . be a corresponding simply-connected Lie group so that . ? ?.. Then . operates on .(.) by an action .
42#
發(fā)表于 2025-3-28 22:18:32 | 只看該作者
43#
發(fā)表于 2025-3-28 23:52:46 | 只看該作者
Rahul Sharma,Minakshi Kaushik,Sijo Arakkal Peious,Markus Bertl,Ankit Vidyarthi,Ashwani Kumar,Dirk Drformations of .(.). If .(.) = .(. + 1)/2, then .(.) is a polynomial ring ?[.., . . ., ..] and the vector fields ., . = 1, . . ., .(. ? 1), span a commutative Lie algebra of dimension .(. ? 1). Let . be a corresponding simply-connected Lie group so that . ? ?.. Then . operates on .(.) by an action .
44#
發(fā)表于 2025-3-29 06:01:55 | 只看該作者
the (instanton part of the) . (for . = .(.)). The prepotential is defined using the geometry of the (classical) periodic Toda integrable system. This result was conjectured in tikya[7]..The purpose of this paper is to extend these results to arbitrary .. Namely, we use the above description of the f
45#
發(fā)表于 2025-3-29 10:57:48 | 只看該作者
46#
發(fā)表于 2025-3-29 13:58:31 | 只看該作者
Tanja Auge,Moritz Hanzig,Andreas Heuernor elusive. Indeed it is particularly those nouns that refer to vague, abstract and ill-defined notions that, out of sheer convenience, commend themselves most in fashionable jargon. Jargon-words provide a handy and often unnoticed way of avoiding or concealing the need for precise definition.
47#
發(fā)表于 2025-3-29 15:32:43 | 只看該作者
Alberto Berenguer,Jose-Norberto Mazón,David Tomásand phYSicists and the publication of the studies collected in this Volume are based on lec- tures presented at the NATO Advanced Study Institute on Mathemati- cal Physics held in Istanbul in August 1970. They contain review papers and didactic material as well as original results. Some of the studi
48#
發(fā)表于 2025-3-29 23:04:17 | 只看該作者
49#
發(fā)表于 2025-3-30 00:24:43 | 只看該作者
50#
發(fā)表于 2025-3-30 05:34:01 | 只看該作者
t of commerce pulsed were Hamburg and Bremen in the West and Danzig and Stettin along the shores of the Baltic in the East: three-quarters of German commerce was traded via sea ports. Na?ve pride soon gave way to increasing concern: on the continent Germany was splendidly supported and protected by
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
基隆市| 乾安县| 林州市| 安图县| 抚顺市| 孙吴县| 英山县| 贡嘎县| 赞皇县| 罗山县| 甘肃省| 武威市| 吴旗县| 玛纳斯县| 平邑县| 六盘水市| 沙田区| 庄河市| 南平市| 兴国县| 宜丰县| 六安市| 无为县| 岢岚县| 交口县| 吉林市| 海兴县| 中西区| 中方县| 营口市| 边坝县| 寿宁县| 建平县| 玉门市| 蒙山县| 江都市| 陇西县| 遂川县| 册亨县| 集贤县| 泸定县|