找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Theory of Discriminant Analysis After R. Fisher; Advanced Research by Shuichi Shinmura Book 2016 Springer Science+Business Media Singap

[復(fù)制鏈接]
樓主: 稀少
11#
發(fā)表于 2025-3-23 13:06:02 | 只看該作者
12#
發(fā)表于 2025-3-23 15:11:30 | 只看該作者
Matroska Feature-Selection Method for Microarray Dataset (Method 2),. The Method 1 offers a 95?% CI for the error rate and coefficient. We obtained two means of the error rates, M1 and M2, in the training and validation samples and proposed a simple model selection procedure to choose the best model with a minimum M2. We compared two statistical LDFs and six MP-base
13#
發(fā)表于 2025-3-23 21:07:09 | 只看該作者
14#
發(fā)表于 2025-3-23 23:55:22 | 只看該作者
Book 2016d discriminate LSD theoretically (Problem 2). We solved the defect of the generalized inverse matrices (Problem 3)..For more than 10 years, many researchers have struggled to analyze the microarray dataset that is LSD (Problem 5). If we call the linearly separable model "Matroska," the dataset consi
15#
發(fā)表于 2025-3-24 06:02:10 | 只看該作者
16#
發(fā)表于 2025-3-24 06:41:56 | 只看該作者
New Theory of Discriminant Analysis After R. Fisher978-981-10-2164-0
17#
發(fā)表于 2025-3-24 14:16:20 | 只看該作者
New Theory of Discriminant Analysis,ely solve these problems through five mathematical programming-based linear discriminant functions (MP-based LDFs). First, I develop an optimal linear discriminant function using integer programming (IP-OLDF) based on a minimum number of misclassifications (minimum NM (MNM)) criterion. We consider d
18#
發(fā)表于 2025-3-24 16:51:31 | 只看該作者
,Iris Data and Fisher’s Assumption,s. Because Fisher evaluates Fisher’s LDF with these data, such data are very popular for the evaluation of discriminant functions. Therefore, we call these data, “Fisher’s Iris data.” Because we can easily separate setosa from virginica and vercicolor through a scatter plot, we usually discriminate
19#
發(fā)表于 2025-3-24 20:00:42 | 只看該作者
20#
發(fā)表于 2025-3-25 01:11:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 23:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆阳市| 新巴尔虎右旗| 瑞安市| 望都县| 桂东县| 绥化市| 乌兰察布市| 五河县| 建湖县| 井陉县| 黄龙县| 肇东市| 广南县| 清水县| 兰州市| 兴文县| 蕉岭县| 增城市| 宜春市| 如皋市| 商南县| 巴林左旗| 隆化县| 朝阳县| 北辰区| 韶关市| 满城县| 昌都县| 衡山县| 吉木萨尔县| 叙永县| 维西| 阿城市| 涿鹿县| 仙游县| 金川县| 阳高县| 黄冈市| 宕昌县| 淄博市| 西宁市|