找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Techniques in Resolution of Singularities; Dan Abramovich,Anne Frühbis-Krüger,Jaros?aw W?odar Textbook 2023 The Editor(s) (if applicab

[復(fù)制鏈接]
查看: 37833|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:28:52 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱New Techniques in Resolution of Singularities
編輯Dan Abramovich,Anne Frühbis-Krüger,Jaros?aw W?odar
視頻videohttp://file.papertrans.cn/666/665802/665802.mp4
概述Gives an introduction to stacks.Includes an introduction to logarithmic geometry.Presents techniques of resolution of singularities
叢書(shū)名稱Oberwolfach Seminars
圖書(shū)封面Titlebook: New Techniques in Resolution of Singularities;  Dan Abramovich,Anne Frühbis-Krüger,Jaros?aw W?odar Textbook 2023 The Editor(s) (if applicab
描述Resolution of singularities is notorious as a difficult topic within algebraic geometry. Recent work, aiming at resolution of families and semistable reduction, infused the subject with logarithmic geometry and algebraic stacks, two techniques essential for the current theory of moduli spaces. As a byproduct a short, a simple and efficient functorial resolution procedure in characteristic 0 using just algebraic stacks was produced...The goals of the book, the result of an Oberwolfach Seminar, are to introduce readers to explicit techniques of resolution of singularities with access to computer implementations, introduce readers to the theories of algebraic stacks and logarithmic structures, and to resolution in families and semistable reduction methods..
出版日期Textbook 2023
關(guān)鍵詞Logarithmic Geometry; Computer Algebra; Semistable Reduction; Algebraic Stacks; Resolution of Singularit
版次1
doihttps://doi.org/10.1007/978-3-031-32115-3
isbn_softcover978-3-031-32114-6
isbn_ebook978-3-031-32115-3Series ISSN 1661-237X Series E-ISSN 2296-5041
issn_series 1661-237X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱New Techniques in Resolution of Singularities影響因子(影響力)




書(shū)目名稱New Techniques in Resolution of Singularities影響因子(影響力)學(xué)科排名




書(shū)目名稱New Techniques in Resolution of Singularities網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱New Techniques in Resolution of Singularities網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱New Techniques in Resolution of Singularities被引頻次




書(shū)目名稱New Techniques in Resolution of Singularities被引頻次學(xué)科排名




書(shū)目名稱New Techniques in Resolution of Singularities年度引用




書(shū)目名稱New Techniques in Resolution of Singularities年度引用學(xué)科排名




書(shū)目名稱New Techniques in Resolution of Singularities讀者反饋




書(shū)目名稱New Techniques in Resolution of Singularities讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:38:25 | 只看該作者
978-3-031-32114-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
板凳
發(fā)表于 2025-3-22 02:53:51 | 只看該作者
New Techniques in Resolution of Singularities978-3-031-32115-3Series ISSN 1661-237X Series E-ISSN 2296-5041
地板
發(fā)表于 2025-3-22 06:55:01 | 只看該作者
Oberwolfach Seminarshttp://image.papertrans.cn/n/image/665802.jpg
5#
發(fā)表于 2025-3-22 09:17:55 | 只看該作者
6#
發(fā)表于 2025-3-22 16:14:53 | 只看該作者
7#
發(fā)表于 2025-3-22 18:02:08 | 只看該作者
8#
發(fā)表于 2025-3-22 22:45:19 | 只看該作者
9#
發(fā)表于 2025-3-23 03:29:04 | 只看該作者
Birational Geometry Using Weighted Blowing Up,This is an exposition of ideas appearing in Abramovich et al. (Functorial embedded resolution via weighted blowings up, arXiv:1906.07106, 2019), discussing in addition the extent to which one can address other aspects of birational geometry using weighted blowings up.
10#
發(fā)表于 2025-3-23 08:07:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 16:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建昌县| 行唐县| 伊通| 青海省| 西青区| 类乌齐县| 乌鲁木齐县| 庆云县| 湘乡市| 邯郸市| 兴安县| 达拉特旗| 沭阳县| 襄樊市| 海伦市| 织金县| 湟中县| 大连市| 开封县| 云龙县| 女性| 九台市| 光泽县| 新田县| 石嘴山市| 长岛县| 丹江口市| 哈巴河县| 镇平县| 柳州市| 上林县| 聂荣县| 林口县| 株洲市| 华容县| 英德市| 都江堰市| 临潭县| 苍南县| 上虞市| 瑞安市|