找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Symmetry Principles in Quantum Field Theory; J. Fr?hlich,G. Hooft,R. Stora Book 1992 Springer Science+Business Media New York 1992 bla

[復(fù)制鏈接]
樓主: negation
61#
發(fā)表于 2025-4-1 05:23:26 | 只看該作者
62#
發(fā)表于 2025-4-1 06:37:13 | 只看該作者
-Algebras and Langlands-Drinfeld Correspondencef a .-algebra can be identified with the center of the universal enveloping algebra of the corresponding affine Kac-Moody algebra. This gives some information on the geometric Langlands-Drinfeld correspondence for complex algebraic curves.
63#
發(fā)表于 2025-4-1 13:45:33 | 只看該作者
64#
發(fā)表于 2025-4-1 17:16:50 | 只看該作者
0258-1221 lassify atomic spectra. And until recently it was thought that symmetries in quantum mechanics should be groups. But it is not so. There are more general algebras, equipped with suitable structure, which admit a perfectly conventional interpretation as a symmetry of a quantum mechanical system. In a
65#
發(fā)表于 2025-4-1 19:59:26 | 只看該作者
Book 1992omic spectra. And until recently it was thought that symmetries in quantum mechanics should be groups. But it is not so. There are more general algebras, equipped with suitable structure, which admit a perfectly conventional interpretation as a symmetry of a quantum mechanical system. In any case, a
66#
發(fā)表于 2025-4-2 02:34:18 | 只看該作者
Non-compact WZW Conformal Field Theorieslack hole target. We compute the (regularized) toroidal partition function and discuss the spectrum of the theory. A comparison is made with more standard approach based on the .(1) coset of the .(1, 1) WZW theory where stability is not evident but where unitarity becomes more transparent.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海晏县| 苍溪县| 翁牛特旗| 昔阳县| 西乡县| 密云县| 洞头县| 那曲县| 阜城县| 兴安盟| 寿宁县| 朝阳区| 翁牛特旗| 即墨市| 东方市| 紫金县| 儋州市| 资中县| 晋江市| 洪湖市| 乌拉特后旗| 石嘴山市| 含山县| 泰州市| 西丰县| 彩票| 连城县| 常州市| 科技| 六盘水市| 万州区| 浦城县| 祁阳县| 林甸县| 沙田区| 安西县| 云霄县| 巴里| 天柱县| 四平市| 五家渠市|