找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Structures for Physics; Bob Coecke Book 2011 Springer-Verlag Berlin Heidelberg 2011 category theory.computer science logic.domain theo

[復(fù)制鏈接]
樓主: 斷頭臺
21#
發(fā)表于 2025-3-25 03:33:01 | 只看該作者
22#
發(fā)表于 2025-3-25 09:07:38 | 只看該作者
Categories for the Practising Physicistof internal comonoids which play an important role in each of them. The categories . and . moreover admit a categorical matrix calculus. Together these features guide us towards topological quantum field theories. We also discuss posetal categories, how group representations are in fact categorical
23#
發(fā)表于 2025-3-25 15:27:30 | 只看該作者
24#
發(fā)表于 2025-3-25 19:23:41 | 只看該作者
A Partial Order on Classical and Quantum States; von Neumann entropy is a measurement on the domain of quantum states..These results yield a foundation from which one can (a) reason qualitatively about probability, (b) derive the lattices of Birkhoff and von Neumann in a unified manner, suggesting that domains may provide a formalism for the log
25#
發(fā)表于 2025-3-25 21:52:39 | 只看該作者
26#
發(fā)表于 2025-3-26 02:44:07 | 只看該作者
“What is a Thing?”: Topos Theory in the Foundations of Physicsbe attached to a system, .. The first, ., is a propositional language; the second, ., is a higher-order, typed language. Both languages provide deductive systems with an intuitionistic logic. With the aid of . we expand and develop some of the earlier work. on topos theory and quantum physics. A key
27#
發(fā)表于 2025-3-26 06:52:34 | 只看該作者
28#
發(fā)表于 2025-3-26 09:58:23 | 只看該作者
29#
發(fā)表于 2025-3-26 16:25:32 | 只看該作者
30#
發(fā)表于 2025-3-26 18:50:39 | 只看該作者
Physics, Topology, Logic and Computation: A Rosetta Stonegy, logic and computation. In this expository paper, we make some of these analogies precise using the concept of “closed symmetric monoidal category”. We assume no prior knowledge of category theory, proof theory or computer science.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 19:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
菏泽市| 建阳市| 清原| 峨眉山市| 眉山市| 泰和县| 大姚县| 黄石市| 东乡县| 邵东县| 宜兴市| 甘谷县| 上犹县| 新乡市| 葵青区| 鄂托克前旗| 乐清市| 喀什市| 永安市| 河东区| 阳江市| 镇远县| 甘德县| 利津县| 耿马| 锡林浩特市| 蒲江县| 扎鲁特旗| 涪陵区| 清苑县| 定南县| 莒南县| 富民县| 榆树市| 荥阳市| 崇阳县| 合作市| 木兰县| 枣庄市| 三台县| 安顺市|