找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Statistical Developments in Data Science; SIS 2017, Florence, Alessandra Petrucci,Filomena Racioppi,Rosanna Verd Conference proceeding

[復制鏈接]
查看: 26838|回復: 59
樓主
發(fā)表于 2025-3-21 18:22:41 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱New Statistical Developments in Data Science
副標題SIS 2017, Florence,
編輯Alessandra Petrucci,Filomena Racioppi,Rosanna Verd
視頻videohttp://file.papertrans.cn/666/665767/665767.mp4
概述Highlights key statistical methods and recent contributions to data science.Shows how Statistics and Data Analysis techniques can support business operations and provide essential information for deci
叢書名稱Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: New Statistical Developments in Data Science; SIS 2017, Florence,  Alessandra Petrucci,Filomena Racioppi,Rosanna Verd Conference proceeding
描述.This volume collects the extended versions of papers presented at the SIS Conference “Statistics and Data Science: new challenges, new generations”, held in Florence, Italy on June 28-30, 2017.?Highlighting the central role of statistics and data analysis methods in the era of Data Science, the contributions offer an essential overview of the latest developments in various areas of statistics research.?The 35 contributions have been divided into six parts, each of which focuses on a core area contributing to “Data Science”.??The book covers topics including strong statistical methodologies, Bayesian approaches, applications in population and social studies, studies in economics and finance, techniques of sample design and mathematical statistics.?Though the book is mainly intended for researchers interested in the latest frontiers of Statistics and Data Analysis, it also offers valuable supplementary material for students of the disciplines dealt withhere. Lastly, it will help Statisticians and Data Scientists recognize their counterparts’ fundamental role..
出版日期Conference proceedings 2019
關鍵詞Data Science; Big Data; Data Analysis; Knowledge Based Methods; Complex Data Analytics; Proceedings; Machi
版次1
doihttps://doi.org/10.1007/978-3-030-21158-5
isbn_softcover978-3-030-21160-8
isbn_ebook978-3-030-21158-5Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱New Statistical Developments in Data Science影響因子(影響力)




書目名稱New Statistical Developments in Data Science影響因子(影響力)學科排名




書目名稱New Statistical Developments in Data Science網(wǎng)絡公開度




書目名稱New Statistical Developments in Data Science網(wǎng)絡公開度學科排名




書目名稱New Statistical Developments in Data Science被引頻次




書目名稱New Statistical Developments in Data Science被引頻次學科排名




書目名稱New Statistical Developments in Data Science年度引用




書目名稱New Statistical Developments in Data Science年度引用學科排名




書目名稱New Statistical Developments in Data Science讀者反饋




書目名稱New Statistical Developments in Data Science讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:17:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:38:20 | 只看該作者
地板
發(fā)表于 2025-3-22 08:14:53 | 只看該作者
Sample Design for the Integration of Population Census and Social Surveys Il Disegno Campionario perveys. The aim of this work is to compare two sampling strategies for the census survey sample. The first comprises pooling together the samples of the main social surveys, while the second consists of an ad hoc sampling design. Different estimation procedures are taken into account in order to compare the two sampling strategies.
5#
發(fā)表于 2025-3-22 08:46:00 | 只看該作者
6#
發(fā)表于 2025-3-22 14:36:05 | 只看該作者
Conference proceedings 2019held in Florence, Italy on June 28-30, 2017.?Highlighting the central role of statistics and data analysis methods in the era of Data Science, the contributions offer an essential overview of the latest developments in various areas of statistics research.?The 35 contributions have been divided into
7#
發(fā)表于 2025-3-22 20:13:19 | 只看該作者
Text Mining and Big Textual Data: Relevant Statistical Modelsxpression: correlation is not causation. Application areas are: quantitative and also qualitative assessment, narrative analysis and assessing impact, and baselining and contextualizing, statistically and in related aspects such as visualization.
8#
發(fā)表于 2025-3-23 01:14:30 | 只看該作者
9#
發(fā)表于 2025-3-23 03:43:07 | 只看該作者
Monitoring the Spatial Correlation Among Functional Data Streams Through Moran’s Indexed data are more likely to be similar when measured at nearby locations rather than in distant places. In order to monitor such correlation over time and to deal with huge amount of data, we propose a strategy based on computing the well known Moran’s index and Geary’s index on summaries of the data.
10#
發(fā)表于 2025-3-23 09:16:32 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 21:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
盘锦市| 沈丘县| 东乌| 昔阳县| 宣武区| 高密市| 延寿县| 姚安县| 方山县| 胶南市| 安溪县| 信宜市| 凌云县| 峡江县| 昌乐县| 昌邑市| 井陉县| 永昌县| 固镇县| 新余市| 平陆县| 金坛市| 兰州市| 余姚市| 永州市| 罗源县| 定日县| 南江县| 阜阳市| 南华县| 泰来县| 大名县| 沂源县| 盐源县| 孟州市| 万年县| 东丰县| 寿光市| 平南县| 清水县| 莱州市|