找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Perspectives on the Theory of Inequalities for Integral and Sum; Nazia Irshad,Asif R. Khan,Josip Pe?ari? Book 2021 The Editor(s) (if a

[復(fù)制鏈接]
查看: 46163|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:34:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱New Perspectives on the Theory of Inequalities for Integral and Sum
編輯Nazia Irshad,Asif R. Khan,Josip Pe?ari?
視頻videohttp://file.papertrans.cn/666/665657/665657.mp4
概述Presents results thanks to generalizations of different works.Provides new applications to various fields.Includes a chapter on Ostrowski inequality
圖書封面Titlebook: New Perspectives on the Theory of Inequalities for Integral and Sum;  Nazia Irshad,Asif R. Khan,Josip Pe?ari? Book 2021 The Editor(s) (if a
描述This book provides new contributions to the theory of inequalities for integral and sum, and includes four chapters. In the first chapter, linear inequalities via interpolation polynomials and green functions are discussed. New results related to Popoviciu type linear inequalities via extension of the Montgomery identity, the Taylor formula, Abel-Gontscharoff‘s interpolation polynomials, Hermite interpolation polynomials and the Fink identity with Green’s functions, are presented.?The second chapter is dedicated to Ostrowski’s inequality and results with applications to numerical integration and probability theory.?The third chapter deals with results involving functions with nondecreasing increments. Real life applications are discussed, as well as and connection of functions with nondecreasing increments together with many important concepts including arithmetic integral mean, wright convex functions, convex functions, nabla-convex functions, Jensen m-convex functions, m-convex functions, m-nabla-convex functions, k-monotonic functions, absolutely monotonic functions, completely monotonic functions, Laplace transform and exponentially convex functions, by using the finite differe
出版日期Book 2021
關(guān)鍵詞Abel-Gontscharo? interpolating polynomial; Bernstein polynomial; Bounded differentiable function; Cebys
版次1
doihttps://doi.org/10.1007/978-3-030-90563-7
isbn_softcover978-3-030-90565-1
isbn_ebook978-3-030-90563-7
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱New Perspectives on the Theory of Inequalities for Integral and Sum影響因子(影響力)




書目名稱New Perspectives on the Theory of Inequalities for Integral and Sum影響因子(影響力)學(xué)科排名




書目名稱New Perspectives on the Theory of Inequalities for Integral and Sum網(wǎng)絡(luò)公開度




書目名稱New Perspectives on the Theory of Inequalities for Integral and Sum網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱New Perspectives on the Theory of Inequalities for Integral and Sum被引頻次




書目名稱New Perspectives on the Theory of Inequalities for Integral and Sum被引頻次學(xué)科排名




書目名稱New Perspectives on the Theory of Inequalities for Integral and Sum年度引用




書目名稱New Perspectives on the Theory of Inequalities for Integral and Sum年度引用學(xué)科排名




書目名稱New Perspectives on the Theory of Inequalities for Integral and Sum讀者反饋




書目名稱New Perspectives on the Theory of Inequalities for Integral and Sum讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:27:24 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:40:22 | 只看該作者
equalityThis book provides new contributions to the theory of inequalities for integral and sum, and includes four chapters. In the first chapter, linear inequalities via interpolation polynomials and green functions are discussed. New results related to Popoviciu type linear inequalities via extens
地板
發(fā)表于 2025-3-22 08:12:50 | 只看該作者
Linear Inequalities via Interpolation Polynomials and Green Functions,ot confined to a specific function rather it is valid for a class of functions. Moreover, it may have the ability to give birth to many other inequalities by substitution of suitable functions and conditions in it. For further study on the topic we refer the monograph.
5#
發(fā)表于 2025-3-22 09:12:45 | 只看該作者
6#
發(fā)表于 2025-3-22 15:27:57 | 只看該作者
7#
發(fā)表于 2025-3-22 18:03:01 | 只看該作者
New Perspectives on the Theory of Inequalities for Integral and Sum978-3-030-90563-7
8#
發(fā)表于 2025-3-22 22:56:31 | 只看該作者
wright convex functions, convex functions, nabla-convex functions, Jensen m-convex functions, m-convex functions, m-nabla-convex functions, k-monotonic functions, absolutely monotonic functions, completely monotonic functions, Laplace transform and exponentially convex functions, by using the finite differe978-3-030-90565-1978-3-030-90563-7
9#
發(fā)表于 2025-3-23 04:07:20 | 只看該作者
ltà alcuni soggetti che operavano in ambito neurologico procedettero in senso inverso, credendo di individuare in bambini, che per le cause più diverse parlavano male o non parlavano affatto, quadri e rimedi simili a quelli che in modo molto generico cominciavano a essere proposti ad adulti, per lo
10#
發(fā)表于 2025-3-23 09:06:34 | 只看該作者
Nazia Irshad,Asif R. Khan,Faraz Mehmood,Josip Pe?ari?a regina e tenesse dappertutto corte bandita.“Ecco“, le disse, “l(fā)e chiavi delle due grandi guardarobe: ecco quella dei piatti d’oro e d’argento, che non vanno in opera tutti i giorni: ecco quella dei miei scrigni, dove tengo i sacchi delle monete: ecco quella degli astucci, dove sono le gioie e i fi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀化市| 兴和县| 祁门县| 望城县| 探索| 武威市| 内江市| 临清市| 鄂伦春自治旗| 虞城县| 鹤山市| 昆山市| 内黄县| 林州市| 房产| 大荔县| 桐柏县| 吴堡县| 台江县| 漳平市| 高雄县| 苍溪县| 潢川县| 屯留县| 邵阳县| 三江| 华亭县| 肥乡县| 乐安县| 鄂尔多斯市| 汽车| 绥化市| 郁南县| 澄迈县| 固安县| 平湖市| 镇远县| 信宜市| 德州市| 山东省| 郑州市|