找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Perspectives on Human Sacrifice and Ritual Body Treatments in Ancient Maya Society; Vera Tiesler,Andrea Cucina Book 20071st edition Sp

[復制鏈接]
樓主: 征募
11#
發(fā)表于 2025-3-23 09:59:30 | 只看該作者
12#
發(fā)表于 2025-3-23 16:43:11 | 只看該作者
Guillermo de Anda Alaníshe more detailed study of the asymptotic behaviour (t→∞) of the process and show for Branching Random Walks a law of large numbers, respectively convergence to a "Poisson limit". Furthermore we show that nontrivial equilibria for our evolutions can exist only in the case of a translation-invariant s
13#
發(fā)表于 2025-3-23 18:23:22 | 只看該作者
Araceli Hurtado Cen,Aleida Cetina Bastida,Vera Tiesler,William J. Folanhe more detailed study of the asymptotic behaviour (t→∞) of the process and show for Branching Random Walks a law of large numbers, respectively convergence to a "Poisson limit". Furthermore we show that nontrivial equilibria for our evolutions can exist only in the case of a translation-invariant s
14#
發(fā)表于 2025-3-23 23:12:36 | 只看該作者
15#
發(fā)表于 2025-3-24 05:00:16 | 只看該作者
16#
發(fā)表于 2025-3-24 07:56:09 | 只看該作者
17#
發(fā)表于 2025-3-24 14:41:42 | 只看該作者
Jane E. Buikstrahe more detailed study of the asymptotic behaviour (t→∞) of the process and show for Branching Random Walks a law of large numbers, respectively convergence to a "Poisson limit". Furthermore we show that nontrivial equilibria for our evolutions can exist only in the case of a translation-invariant s
18#
發(fā)表于 2025-3-24 15:17:28 | 只看該作者
he more detailed study of the asymptotic behaviour (t→∞) of the process and show for Branching Random Walks a law of large numbers, respectively convergence to a "Poisson limit". Furthermore we show that nontrivial equilibria for our evolutions can exist only in the case of a translation-invariant s
19#
發(fā)表于 2025-3-24 22:27:40 | 只看該作者
20#
發(fā)表于 2025-3-25 02:49:07 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 18:36
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
高尔夫| 固原市| 思南县| 惠东县| 盈江县| 桃源县| 定兴县| 西充县| 宁夏| 伊川县| 永泰县| 新疆| 保靖县| 峨山| 运城市| 宜阳县| 柳林县| 大埔区| 陈巴尔虎旗| 汨罗市| 翁牛特旗| 上林县| 葵青区| 云林县| 沙田区| 甘肃省| 乌苏市| 分宜县| 徐闻县| 福海县| 汉沽区| 通河县| 惠安县| 嘉鱼县| 兴山县| 新乡市| 莒南县| 梁山县| 泗水县| 屯留县| 搜索|