找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Learning Paradigms in Soft Computing; Lakhmi C. Jain,Janusz Kacprzyk Book 2002 Springer-Verlag Berlin Heidelberg 2002 Lazy learning.ar

[復制鏈接]
樓主: Optician
31#
發(fā)表于 2025-3-26 23:07:58 | 只看該作者
32#
發(fā)表于 2025-3-27 04:55:29 | 只看該作者
978-3-7908-2499-5Springer-Verlag Berlin Heidelberg 2002
33#
發(fā)表于 2025-3-27 05:26:09 | 只看該作者
New Learning Paradigms in Soft Computing978-3-7908-1803-1Series ISSN 1434-9922 Series E-ISSN 1860-0808
34#
發(fā)表于 2025-3-27 13:25:53 | 只看該作者
1434-9922 achine learningLearning is a key issue in the analysis and design of all kinds of intelligent systems. In recent time many new paradigms of automated (machine) learning have been proposed in the literature. Soft computing, that has proved to be an effective and efficient tool in so many areas of sci
35#
發(fā)表于 2025-3-27 14:08:57 | 只看該作者
Statistical Learning by Natural Gradient Descent, an algorithm to compute the natural gradient. When the input dimension . is much larger than the number of hidden neurons, the complexity of this algorithm is of order .. It is confirmed by simulations that the natural gradient descent learning rule is not only efficient but also robust.
36#
發(fā)表于 2025-3-27 20:19:36 | 只看該作者
Reduction of Discriminant Rules Based on Frequent Item Set Calculation,s are divided in atomic operations that have been called basic steps so that it is easier to optimize the execution of any algorithm. We also present the implementation of this approach in Damisys what demonstrates that our approach is implementable and effective dealing with large datasets.
37#
發(fā)表于 2025-3-27 22:06:51 | 只看該作者
38#
發(fā)表于 2025-3-28 02:32:54 | 只看該作者
Book 2002ing have been proposed in the literature. Soft computing, that has proved to be an effective and efficient tool in so many areas of science and technology, seems to offer new qualities in the realm of machine learning too. The purpose of this volume is to present some new learning paradigms that hav
39#
發(fā)表于 2025-3-28 08:43:50 | 只看該作者
Active Learning in Neural Networks,informative training sets. Such training sets can be obtained if the learner is enabled to select those training data that he or she expects to be most informative. In this case, the learner is no longer a passive recipient of information but takes an active role in the selection of the training data.
40#
發(fā)表于 2025-3-28 14:24:30 | 只看該作者
Performance Comparisons of Neural Networks and Machine Learning Techniques: A Critical Assessment ois rather limited. This chapter presents a study based on 13 popular datasets from the UCI Machine Learning repository, which demonstrates how careful one has to be when drawing conclusions drawn from such empirical studies.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
犍为县| 大新县| 长岭县| 井陉县| 台北市| 福鼎市| 故城县| 兖州市| 息烽县| 留坝县| 盐亭县| 准格尔旗| 高阳县| 噶尔县| 沅江市| 宿迁市| 邮箱| 高州市| 静安区| 和田县| 宿州市| 修武县| 白银市| 贡嘎县| 金阳县| 延川县| 双辽市| 江口县| 岳阳市| 黄梅县| 大余县| 嘉荫县| 江陵县| 若羌县| 阜城县| 女性| 恩平市| 璧山县| 湖南省| 罗甸县| 依兰县|