找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Issues and Paradigms in Research on Social Dilemmas; Anders Biel,Daniel Eek,Mathias Gustafsson Book 2008 Springer-Verlag US 2008 Feedb

[復(fù)制鏈接]
樓主: commingle
11#
發(fā)表于 2025-3-23 11:40:18 | 只看該作者
Margaret Foddy,Robyn Dawesd structured light fields in optical micromanipulation, utilising various geometries and unconventional light propagation properties. While most of the concepts developed are demonstrated with artificial microscopic reference particles, the work concludes with a comprehensive demonstration of optica
12#
發(fā)表于 2025-3-23 14:28:44 | 只看該作者
Mizuho Shinada,Toshio Yamagishixity, which is nearly linear in the bit-complexity of the representation of the output. That is, Newton‘s algebraic iteration nearly reaches optimality. The approach requires computations modulo a random prime and its powers, to avoid singularities. For some problems the algorithm is nearly optimal
13#
發(fā)表于 2025-3-23 19:12:08 | 只看該作者
Yuval Samid,Ramzi Suleimanxity, which is nearly linear in the bit-complexity of the representation of the output. That is, Newton‘s algebraic iteration nearly reaches optimality. The approach requires computations modulo a random prime and its powers, to avoid singularities. For some problems the algorithm is nearly optimal
14#
發(fā)表于 2025-3-23 22:34:28 | 只看該作者
David A. Schroeder,Alicia F. Bembenek,Kimberly M. Kinsey,Julie E. Steel,Andria J. Woodellstruct new linearizations. Some linearizations have notable properties, such as low bandwidth, or allow for factoring the coefficient matrices into unitary-plus-low-rank matrices. Moreover, we will provide bounds on the low-rank parts of the resulting unitary-plus-low-rank decomposition. To present
15#
發(fā)表于 2025-3-24 06:17:06 | 只看該作者
16#
發(fā)表于 2025-3-24 07:59:41 | 只看該作者
Chi Sing Ngan,Wing Tung Auh of the functions by first presenting its principle and then illustrating it with examples. We present a case study to show how the tool supports the scenario-based specification approach. Finally, we conclude the paper and suggest topics for future research.
17#
發(fā)表于 2025-3-24 13:33:47 | 只看該作者
18#
發(fā)表于 2025-3-24 15:39:24 | 只看該作者
19#
發(fā)表于 2025-3-24 22:43:12 | 只看該作者
20#
發(fā)表于 2025-3-25 03:06:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 22:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
望奎县| 博罗县| 开江县| 定边县| 清原| 曲麻莱县| 禹州市| 宁安市| 莱州市| 体育| 溆浦县| 洮南市| 武强县| 西安市| 郎溪县| 平山县| 封开县| 柯坪县| 孙吴县| 青岛市| 镇沅| 郎溪县| 德清县| 毕节市| 曲周县| 神池县| 潮安县| 阿城市| 贵溪市| 汝州市| 南岸区| 梓潼县| 凯里市| 塔城市| 卓尼县| 育儿| 壶关县| 海城市| 巴彦县| 正蓝旗| 清水河县|