找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Horizons in pro-p Groups; Marcus Sautoy,Dan Segal,Aner Shalev Book 2000 Springer Science+Business Media New York 2000 Finite.Group the

[復制鏈接]
樓主: 祈求
11#
發(fā)表于 2025-3-23 12:14:32 | 只看該作者
12#
發(fā)表于 2025-3-23 16:02:15 | 只看該作者
13#
發(fā)表于 2025-3-23 21:08:47 | 只看該作者
Peter Symonds,Thomas Weigeler with a nondegenerate ground state. The characteristic features in the excitations in the two groups are summarized. The ultrafast dynamic was studied for three different poly(phenylacetylene)s (PPAs) with weakly-nondegenerate ground state to clarify the transition of the nonlinear properties betw
14#
發(fā)表于 2025-3-24 01:09:38 | 只看該作者
15#
發(fā)表于 2025-3-24 03:14:26 | 只看該作者
Lie Methods in the Theory of pro-, Groups,bjects, such as finite .-groups and residually finite groups. Aspects of this topic feature in several books and survey papers; see for instance [62], [45] Chapter VIII, [42], [137], [27], [57], [58], [148], [121]. In this survey I will try to focus on the most recent developments and applications,
16#
發(fā)表于 2025-3-24 07:10:11 | 只看該作者
17#
發(fā)表于 2025-3-24 13:28:23 | 只看該作者
18#
發(fā)表于 2025-3-24 16:59:12 | 只看該作者
On Just Infinite Abstract and Profinite Groups,osed normal subgroups have finite index. Just infinite groups have arisen in a variety of contexts. The abstract just infinite groups having non-trivial abelian normal subgroups are precisely the space groups whose point groups act rationally irreducibly on the abelian normal subgroups (see McCarthy
19#
發(fā)表于 2025-3-24 21:11:53 | 只看該作者
The Nottingham Group,ocal field.(where ..., this finitely generated pro-. Groups..was introduced to the group theory community in the work of D. Johnson [13] (himself inspired by an article of S. Jennings [12]) and his Ph.D. student I. York [26] [27]. Viewing . as a group of formal power series under substitution, D. Jo
20#
發(fā)表于 2025-3-25 00:50:17 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 10:01
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
诏安县| 科技| 玉树县| 喀喇| 东港市| 渭南市| 呼图壁县| 筠连县| 五大连池市| 五寨县| 宜黄县| 汨罗市| 共和县| 江安县| 大关县| 宁南县| 遂平县| 闽侯县| 梁平县| 衡东县| 都昌县| 定远县| 凉山| 盈江县| 嵊泗县| 长子县| 凉城县| 苏尼特右旗| 新竹县| 高阳县| 东丽区| 巴南区| 靖西县| 武山县| 长汀县| 开化县| 霍山县| 自治县| 恩施市| 迁安市| 富阳市|