找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Frontiers in Number Theory and Applications; Jordi Guàrdia,Nicu?or Minculete,Abdelkader Zekhnin Book 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
查看: 11734|回復(fù): 67
樓主
發(fā)表于 2025-3-21 19:42:00 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱New Frontiers in Number Theory and Applications
編輯Jordi Guàrdia,Nicu?or Minculete,Abdelkader Zekhnin
視頻videohttp://file.papertrans.cn/666/665289/665289.mp4
概述Presents recent advances as well as new directions in number theory and its applications.Shows the rapid evolution of the field with a particular focus on analytic and algebraic number theory.Offers a
叢書名稱Trends in Mathematics
圖書封面Titlebook: New Frontiers in Number Theory and Applications;  Jordi Guàrdia,Nicu?or Minculete,Abdelkader Zekhnin Book 2024 The Editor(s) (if applicable
描述.This contributed volume presents recent advances as well as new directions in number theory and its applications. Algebraic and analytic number theory are the main focus with chapters showing how these areas are rapidly evolving. By gathering authors from over seven countries, readers will gain an international perspective on the current state of research as well as potential avenues to explore. Specific topics covered include:.Algebraic Number Theory.Elliptic curves and Cryptography.Hopf Galois theory.Analytic and elementary number theory and applications.New Frontiers in Number Theory and Applications.?will appeal to researchers interested in gaining a global view of current research in number theory..
出版日期Book 2024
關(guān)鍵詞Algebraic number theory; Analytic number theory; Computational Number Theory; Class field theory; Enumer
版次1
doihttps://doi.org/10.1007/978-3-031-51959-8
isbn_softcover978-3-031-51961-1
isbn_ebook978-3-031-51959-8Series ISSN 2297-0215 Series E-ISSN 2297-024X
issn_series 2297-0215
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱New Frontiers in Number Theory and Applications影響因子(影響力)




書目名稱New Frontiers in Number Theory and Applications影響因子(影響力)學(xué)科排名




書目名稱New Frontiers in Number Theory and Applications網(wǎng)絡(luò)公開度




書目名稱New Frontiers in Number Theory and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱New Frontiers in Number Theory and Applications被引頻次




書目名稱New Frontiers in Number Theory and Applications被引頻次學(xué)科排名




書目名稱New Frontiers in Number Theory and Applications年度引用




書目名稱New Frontiers in Number Theory and Applications年度引用學(xué)科排名




書目名稱New Frontiers in Number Theory and Applications讀者反饋




書目名稱New Frontiers in Number Theory and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:10:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:13:07 | 只看該作者
Trends in Mathematicshttp://image.papertrans.cn/n/image/665289.jpg
地板
發(fā)表于 2025-3-22 07:58:47 | 只看該作者
5#
發(fā)表于 2025-3-22 09:57:34 | 只看該作者
Lengths and class numbers,There is an interesting interplay between class numbers and lengths. While trying to find a new proof for the problem of the tenth field, I was amazed by the richness of this interplay. My aim, when writing this chapter, was to explain (in a playful manner) how a classical topic can create new research problems.
6#
發(fā)表于 2025-3-22 12:54:46 | 只看該作者
Jordi Guàrdia,Nicu?or Minculete,Abdelkader ZekhninPresents recent advances as well as new directions in number theory and its applications.Shows the rapid evolution of the field with a particular focus on analytic and algebraic number theory.Offers a
7#
發(fā)表于 2025-3-22 21:04:59 | 只看該作者
Survey number theoretic transform algorithm over a polynomial ring and its application,
8#
發(fā)表于 2025-3-23 01:16:41 | 只看該作者
9#
發(fā)表于 2025-3-23 04:05:18 | 只看該作者
10#
發(fā)表于 2025-3-23 08:51:08 | 只看該作者
On Monogenity of Certain Number Fields Defined by a Trinomial ,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 06:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南投县| 达日县| 财经| 桦甸市| 玛多县| 武定县| 宜黄县| 拉孜县| 札达县| 清流县| 广宁县| 瑞金市| 巴彦淖尔市| 绥滨县| 曲周县| 香格里拉县| 沅江市| 沛县| 深水埗区| 清远市| 石景山区| 凌云县| 德令哈市| 宁化县| 襄樊市| 安平县| 新野县| 鹿泉市| 灌云县| 东平县| 德保县| 青铜峡市| 长兴县| 修武县| 桐梓县| 湟中县| 循化| 香河县| 乐陵市| 韶山市| 龙山县|