找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Frontiers in Mining Complex Patterns; Second International Annalisa Appice,Michelangelo Ceci,Zbigniew W. Ras Conference proceedings 201

[復制鏈接]
查看: 16793|回復: 54
樓主
發(fā)表于 2025-3-21 19:13:01 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱New Frontiers in Mining Complex Patterns
副標題Second International
編輯Annalisa Appice,Michelangelo Ceci,Zbigniew W. Ras
視頻videohttp://file.papertrans.cn/666/665284/665284.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: New Frontiers in Mining Complex Patterns; Second International Annalisa Appice,Michelangelo Ceci,Zbigniew W. Ras Conference proceedings 201
描述This book constitutes the thoroughly refereed post-conference proceedings of the Second International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2013, held in conjunction with ECML/PKDD 2013 in Prague, Czech Republic, in September 2013. The 16 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on data streams and time series analysis, classification, clustering and pattern discovery, graphs, networks and relational data, machine learning and music data.
出版日期Conference proceedings 2014
關鍵詞classification; clustering; data mining; data mining; feature selection; feature selection; machine learni
版次1
doihttps://doi.org/10.1007/978-3-319-08407-7
isbn_softcover978-3-319-08406-0
isbn_ebook978-3-319-08407-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書目名稱New Frontiers in Mining Complex Patterns影響因子(影響力)




書目名稱New Frontiers in Mining Complex Patterns影響因子(影響力)學科排名




書目名稱New Frontiers in Mining Complex Patterns網絡公開度




書目名稱New Frontiers in Mining Complex Patterns網絡公開度學科排名




書目名稱New Frontiers in Mining Complex Patterns被引頻次




書目名稱New Frontiers in Mining Complex Patterns被引頻次學科排名




書目名稱New Frontiers in Mining Complex Patterns年度引用




書目名稱New Frontiers in Mining Complex Patterns年度引用學科排名




書目名稱New Frontiers in Mining Complex Patterns讀者反饋




書目名稱New Frontiers in Mining Complex Patterns讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:59:29 | 只看該作者
Conference proceedings 2014erns, NFMCP 2013, held in conjunction with ECML/PKDD 2013 in Prague, Czech Republic, in September 2013. The 16 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on data streams and time series analysis, classification, cl
板凳
發(fā)表于 2025-3-22 01:20:00 | 只看該作者
地板
發(fā)表于 2025-3-22 08:38:00 | 只看該作者
Mining Frequent Partite Episodes with Partwise Constraintsstraint from an input event sequence. By theoretical analysis, we show that the algorithm runs in output polynomial time and polynomial space for the total input size. In the experiment, we show that our proposed algorithm is much faster than existing algorithms for mining partite episodes on an artificial and a real-world datasets.
5#
發(fā)表于 2025-3-22 11:11:34 | 只看該作者
ReliefF for Hierarchical Multi-label Classificationevaluation, we consider datasets from two prominent domains for HMC - functional genomics and image annotation. The results show that HMC-ReliefF can identify the relevant features present in the data and produces a ranking where they are placed among the top ranked ones.
6#
發(fā)表于 2025-3-22 15:06:00 | 只看該作者
A,:?A Generative Model for Labelled, Weighted Graphs parameters of the . model to real-world graphs and for generating random graphs from the model. Using real-world directed and undirected graphs as input, we compare our approach to state-of-the-art random labelled graph generators and draw conclusions about the contribution of discrete vertex labels and edge weights to graph structure.
7#
發(fā)表于 2025-3-22 17:21:54 | 只看該作者
A Relational Unsupervised Approach to Author Identificationnknown-author model to the known-author model, we can conclude that the author is the same. Preliminary results are promising and the approach seems viable in real contexts since it does not need a training phase and performs well also with short texts.
8#
發(fā)表于 2025-3-22 23:53:38 | 只看該作者
9#
發(fā)表于 2025-3-23 03:38:33 | 只看該作者
10#
發(fā)表于 2025-3-23 05:38:21 | 只看該作者
Conference proceedings 2014ewed and selected from numerous submissions. The papers are organized in topical sections on data streams and time series analysis, classification, clustering and pattern discovery, graphs, networks and relational data, machine learning and music data.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 05:46
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
信丰县| 泸州市| 呼图壁县| 新野县| 嘉禾县| 兴海县| 四会市| 宝清县| 屯昌县| 昌都县| 宝兴县| 土默特左旗| 武汉市| 高陵县| 察隅县| 志丹县| 甘泉县| 合肥市| 保定市| 隆德县| 南岸区| 镇江市| 皋兰县| 神农架林区| 长葛市| 屯留县| 宜良县| 龙南县| 扶风县| 若羌县| 榆树市| 广州市| 湾仔区| 岱山县| 邛崃市| 舞阳县| 梁山县| 永吉县| 潞城市| 扬中市| 抚远县|