找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Frontiers in Artificial Intelligence; JSAI 2006 Conference Takashi Washio,Ken Satoh,Akihiro Inokuchi Conference proceedings 2007 Spring

[復(fù)制鏈接]
樓主: hormone-therapy
11#
發(fā)表于 2025-3-23 13:19:44 | 只看該作者
12#
發(fā)表于 2025-3-23 15:50:37 | 只看該作者
13#
發(fā)表于 2025-3-23 21:31:40 | 只看該作者
Translational Symmetry in Subsequence Time-Series Clusteringers are necessarily governed by irreducible representations of the translational group. As a result, the cluster centers necessarily forms sinusoids, almost irrespective of the input time-series data. To the best of the author’s knowledge, this is the first work which demonstrates the interesting connection between STSC and group theory.
14#
發(fā)表于 2025-3-24 00:03:27 | 只看該作者
15#
發(fā)表于 2025-3-24 05:44:49 | 只看該作者
Aspects of the Indefiniteness Effectty of interrogatives with wide scope taking indefinites to form speech acts for requesting answers. Our proposal is formally implemented using the interpretation of quantifying into questions as choice readings provided by [2] and [3].
16#
發(fā)表于 2025-3-24 08:07:44 | 只看該作者
17#
發(fā)表于 2025-3-24 10:42:22 | 只看該作者
18#
發(fā)表于 2025-3-24 17:14:00 | 只看該作者
19#
發(fā)表于 2025-3-24 22:51:25 | 只看該作者
Hidekazu Kubota,Toyoaki Nishida,Yasuyuki Sumiounded. (In Minkowski spacetime, all string solutions arc of the stable type)..Recent progress on self-consistent solutions to the Einstein equations for string dominated universes is reviewed. The energy-momentum tensor for a gas of strings is then considered as source of the spacetime geometry and
20#
發(fā)表于 2025-3-25 02:00:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 03:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平顶山市| 成安县| 石楼县| 宁阳县| 漳州市| 贡觉县| 许昌县| 平远县| 峨山| 河北区| 乐清市| 突泉县| 大渡口区| 灵台县| 高尔夫| 称多县| 泰宁县| 无极县| 秭归县| 肥西县| 怀来县| 大方县| 通海县| 松溪县| 绵竹市| 突泉县| 龙井市| 香港 | 原阳县| 嵩明县| 来凤县| 鹿泉市| 垦利县| 林周县| 方山县| 齐齐哈尔市| 长顺县| 民和| 永吉县| 洞头县| 陵川县|