找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Frontiers in Artificial Intelligence; JSAI-isAI 2022 Works Yasufumi Takama,Katsutoshi Yada,Sachiyo Arai Conference proceedings 2023 The

[復(fù)制鏈接]
樓主: ISH
31#
發(fā)表于 2025-3-26 22:57:05 | 只看該作者
JNLP Team: Deep Learning Approaches for?Tackling Long and?Ambiguous Legal Documents in?COLIEE 2022cs. The challenge for this competition is required not only the skills in processing long documents but also the ability to resolve ambiguity in the legal domain. For lengthy documents, we proposed a document-level attention mechanism (Task 1) and passage mining (Task 3, 4). Regarding ambiguity in t
32#
發(fā)表于 2025-3-27 04:20:14 | 只看該作者
33#
發(fā)表于 2025-3-27 07:56:47 | 只看該作者
34#
發(fā)表于 2025-3-27 10:08:56 | 只看該作者
HUKB at?the?COLIEE 2022 Statute Law Taskystems. Our new proposed IR system utilizes the similarity of descriptions of judicial decisions between questions and articles. In addition to this new IR system, we also use an ordinal keyword-based IR system (BM25) and the BERT-based IR system proposed in COLIEE 2020. Because of the different cha
35#
發(fā)表于 2025-3-27 17:37:15 | 只看該作者
Using Textbook Knowledge for?Statute Retrieval and?Entailment Classificationlationships between a query statement and a statute. While using transformer-based architectures, we extract additional statute information from textbooks and incorporate this knowledge into the original pipeline. Results indicate that there is a benefit of using the textbook knowledge in Statute Re
36#
發(fā)表于 2025-3-27 21:13:31 | 只看該作者
37#
發(fā)表于 2025-3-27 22:22:21 | 只看該作者
Less is Better: Constructing Legal Question Answering System by Weighing Longest Common Subsequence ed method tackles on how to construct an answering system capable of responding Yes/No legal questions, ultimately recognizing entailment between legal queries from past Japanese bar exams and relevant articles of Japan Civil Code (both in Japanese). We first attempted to extract disjunctive union t
38#
發(fā)表于 2025-3-28 05:14:02 | 只看該作者
39#
發(fā)表于 2025-3-28 08:55:28 | 只看該作者
Product Portfolio Optimization for?LTV Maximizationtractive products to stimulate purchase motivation. For recommendation, it is essential to narrow the target to effective customers and choose appropriate recommended products to maximize the effect with little cost. We formulated this problem as a product portfolio optimization problem to maximize
40#
發(fā)表于 2025-3-28 11:00:19 | 只看該作者
An Examination of Eating Experiences in Relation to Psychological States, Loneliness, and Depressionersonal communication. This study aimed to estimate and examine the psychological states and traits of texts describing eating experiences using BERT. Texts about positive, negative, and neutral eating experiences were collected from 877 crowd workers along with their psychological traits (lonelines
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沁水县| 台江县| 司法| 新田县| 汽车| 筠连县| 民丰县| 尉犁县| 拉萨市| 无锡市| 沁阳市| 沈阳市| 蚌埠市| 巢湖市| 响水县| 乾安县| 邛崃市| 滕州市| 禄丰县| 浮梁县| 东兰县| 富裕县| 当阳市| 镇原县| 西藏| 贺州市| 宜兴市| 临清市| 察雅县| 方正县| 措美县| 阿图什市| 寿光市| 安吉县| 车致| 昭通市| 叙永县| 临高县| 临桂县| 尤溪县| 巫山县|