找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Foundations for Information Theory; Logical Entropy and David Ellerman Book 2021 The Author(s), under exclusive license to Springer Na

[復(fù)制鏈接]
樓主: CURD
21#
發(fā)表于 2025-3-25 03:45:34 | 只看該作者
22#
發(fā)表于 2025-3-25 08:09:02 | 只看該作者
Quantum Logical Information Theory,ty matrices. Then the transition to the quantum version of logical entropy is made using the semi-algorithmic procedure of “l(fā)inearization.” Given a concept applied to sets, apply that concept to the basis set of a vector space and whatever it linearly generates gives the corresponding vector space c
23#
發(fā)表于 2025-3-25 15:04:02 | 只看該作者
24#
發(fā)表于 2025-3-25 16:17:47 | 只看該作者
25#
發(fā)表于 2025-3-25 23:48:47 | 只看該作者
Logical Entropy,l entropy is first defined in terms of the set of distinctions of a partition and then a probability measure on the set defines the quantitative version of logical entropy. We give a history of the logical entropy formula that goes back to Corrado Gini’s 1912 “index of mutability” and has been rediscovered many times.
26#
發(fā)表于 2025-3-26 00:11:11 | 只看該作者
2211-4548 gical entropy approach to the MaxEntropy method.Presents a nThis monograph offers a new foundation for information theory that is based on the notion of information-as-distinctions, being directly measured by logical entropy, and on the re-quantification as Shannon entropy, which is the fundamental
27#
發(fā)表于 2025-3-26 05:24:00 | 只看該作者
The Compound Notions for Logical and Shannon Entropies,loped for logical entropy along with the corresponding notions for Shannon entropy. And finally, a number of intriguing parallels between the two entropies and related inequalities are developed which allow some inequalities directly relating the two entropies.
28#
發(fā)表于 2025-3-26 11:11:42 | 只看該作者
29#
發(fā)表于 2025-3-26 14:32:34 | 只看該作者
30#
發(fā)表于 2025-3-26 17:23:35 | 只看該作者
https://doi.org/10.1007/978-3-030-86552-8entropy; partition logic; information theory; logical entropy; Shannon entropy; logical probability; index
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
墨竹工卡县| 南阳市| 赞皇县| 油尖旺区| 洛宁县| 白山市| 清镇市| 嘉祥县| 满城县| 凤冈县| 铜梁县| 长治市| 鄂州市| 凤冈县| 灵武市| 全椒县| 金秀| 承德县| 大足县| 信宜市| 浮山县| 巢湖市| 桂东县| 甘泉县| 太原市| 武强县| 博野县| 胶州市| 县级市| 上饶县| 保靖县| 高州市| 大田县| 丹巴县| 澄城县| 潼南县| 孟州市| 沈丘县| 应城市| 奈曼旗| 纳雍县|