找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Era for Robust Speech Recognition; Exploiting Deep Lear Shinji Watanabe,Marc Delcroix,John R. Hershey Book 2017 Springer International

[復(fù)制鏈接]
樓主: 拼圖游戲
21#
發(fā)表于 2025-3-25 06:49:41 | 只看該作者
Raw Multichannel Processing Using Deep Neural Networksfrom acoustic modeling. In this chapter, we perform multichannel enhancement jointly with acoustic modeling in a deep-neural-network framework. Inspired by beamforming, which leverages differences in the fine time structure of the signal at different microphones to filter energy arriving from differ
22#
發(fā)表于 2025-3-25 09:21:00 | 只看該作者
23#
發(fā)表于 2025-3-25 15:06:42 | 只看該作者
24#
發(fā)表于 2025-3-25 16:02:51 | 只看該作者
25#
發(fā)表于 2025-3-25 22:10:45 | 只看該作者
Adaptation of Deep Neural Network Acoustic Models for Robust Automatic Speech Recognitionrecognition (ASR). However, DNN adaptation remains a challenging task. Many approaches have been proposed in recent years to improve the adaptability of DNNs to achieve robust ASR. This chapter will review the recent adaptation methods for DNNs, broadly categorising them into constrained adaptation,
26#
發(fā)表于 2025-3-26 02:34:57 | 只看該作者
Training Data Augmentation and Data Selectiontions. Our work, conducted during the JSALT 2015 workshop, aimed at the development of: (1) Data augmentation strategies including noising and reverberation. They were tested in combination with two approaches to signal enhancement: a carefully engineered WPE dereverberation and a learned DNN-based
27#
發(fā)表于 2025-3-26 04:56:30 | 只看該作者
Advanced Recurrent Neural Networks for Automatic Speech Recognitionnternal state of the network which allows it to exhibit dynamic temporal behavior. In this chapter, we describe several advanced RNN models for distant speech recognition (DSR). The first set of models are extensions of the prediction-adaptation-correction RNNs (PAC-RNNs). These models were inspired
28#
發(fā)表于 2025-3-26 09:29:16 | 只看該作者
29#
發(fā)表于 2025-3-26 14:31:48 | 只看該作者
End-to-End Architectures for Speech Recognitionoefficient features), natural language processing (.-gram language models), or statistics (hidden markov models). Because of this “compartmentalization,” it is widely accepted that components of an ASR system will largely be optimized individually and in isolation, which will negatively influence ov
30#
發(fā)表于 2025-3-26 18:02:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 14:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
萨迦县| 堆龙德庆县| 遂川县| 西林县| 昌黎县| 聊城市| 磴口县| 洛南县| 佳木斯市| 图木舒克市| 扶沟县| 万安县| 宁明县| 大港区| 怀集县| 汾西县| 达孜县| 东阳市| 迭部县| 涟源市| 潍坊市| 台东市| 宁明县| 祥云县| 乌兰浩特市| 区。| 太和县| 壤塘县| 观塘区| 台中市| 永春县| 黑河市| 宜城市| 石嘴山市| 徐水县| 琼海市| 墨江| 长海县| 上蔡县| 扶绥县| 台中市|