找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Era for Robust Speech Recognition; Exploiting Deep Lear Shinji Watanabe,Marc Delcroix,John R. Hershey Book 2017 Springer International

[復(fù)制鏈接]
樓主: 拼圖游戲
11#
發(fā)表于 2025-3-23 09:51:11 | 只看該作者
Shinji Watanabe,Marc Delcroix,John R. HersheyField of automatic speech recognition has evolved greatly since the introduction of deep learning.Covers the state-of-the-art in noise robustness for deep neural-network-based speech recognition.Inclu
12#
發(fā)表于 2025-3-23 14:45:39 | 只看該作者
978-3-319-87849-2Springer International Publishing AG 2017
13#
發(fā)表于 2025-3-23 18:12:25 | 只看該作者
Multichannel Speech Enhancement Approaches to DNN-Based Far-Field Speech Recognitionased multichannel approaches and describe beamforming-based noise reduction and linear-prediction-based dereverberation. We demonstrate the potential of these approaches by introducing two systems that achieved top performance on the recent REVERB and CHiME-3 benchmarks.
14#
發(fā)表于 2025-3-24 00:55:18 | 只看該作者
Distant Speech Recognition Experiments Using the AMI Corpushes using microphone array beamforming followed by single-channel acoustic modelling with approaches which combine multichannel signal processing with acoustic modelling in the context of convolutional networks.
15#
發(fā)表于 2025-3-24 02:42:00 | 只看該作者
http://image.papertrans.cn/n/image/665184.jpg
16#
發(fā)表于 2025-3-24 09:53:58 | 只看該作者
17#
發(fā)表于 2025-3-24 10:44:18 | 只看該作者
Preliminaries background of robustness issues of deep neural-network-based ASR. It provides an overview of robust ASR research including a brief history of several studies before the deep learning era, basic formulations of ASR, signal processing, and neural networks. This chapter also introduces common notation
18#
發(fā)表于 2025-3-24 17:00:02 | 只看該作者
19#
發(fā)表于 2025-3-24 19:20:04 | 只看該作者
Multichannel Spatial Clustering Using Model-Based Source Separation important regard, like the number and arrangement of microphones or the reverberation and noise conditions. Because these configurations are difficult to predict a priori and difficult to exhaustively train over, the use of unsupervised spatial-clustering methods is attractive. Such methods separat
20#
發(fā)表于 2025-3-25 02:36:36 | 只看該作者
Discriminative Beamforming with Phase-Aware Neural Networks for Speech Enhancement and Recognitionlong processing pipeline, the processing steps are usually designed to optimize cost functions that are not directly related to the task, leading to suboptimal performance. In this chapter, we introduce a beamforming (BF) network to perform spatial filtering that is optimal for the ASR task. The BF
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 19:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武城县| 海口市| 蒲江县| 姜堰市| 东乡| 兰州市| 明光市| 兴海县| 无为县| 广元市| 榕江县| 会理县| 江油市| 兴化市| 白沙| 卓尼县| 塘沽区| 松江区| 阿瓦提县| 六盘水市| 祁东县| 建宁县| 河池市| 登封市| 清水河县| 武宣县| 玉树县| 瑞金市| 扬州市| 鲁甸县| 嘉荫县| 南江县| 卢龙县| 信丰县| 梧州市| 普陀区| 通化县| 新安县| 丹寨县| 秭归县| 临夏市|