找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Developments in Singularity Theory; D. Siersma,C. T. C. Wall,V. Zakalyukin Book 2001 Springer Science+Business Media Dordrecht 2001 Me

[復(fù)制鏈接]
查看: 30157|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:52:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱New Developments in Singularity Theory
編輯D. Siersma,C. T. C. Wall,V. Zakalyukin
視頻videohttp://file.papertrans.cn/666/665041/665041.mp4
叢書名稱NATO Science Series II: Mathematics, Physics and Chemistry
圖書封面Titlebook: New Developments in Singularity Theory;  D. Siersma,C. T. C. Wall,V. Zakalyukin Book 2001 Springer Science+Business Media Dordrecht 2001 Me
描述Singularities arise naturally in a huge number of differentareas of mathematics and science. As a consequence, singularity theorylies at the crossroads of paths that connect many of the mostimportant areas of applications of mathematics with some of its mostabstract regions..The main goal in most problems of singularity theory is to understandthe dependence of some objects of analysis, geometry, physics, orother science (functions, varieties, mappings, vector or tensorfields, differential equations, models, etc.) on parameters..The articles collected here can be grouped under three headings. (A)Singularities of real maps; (B) Singular complex variables; and (C)Singularities of homomorphic maps.
出版日期Book 2001
關(guān)鍵詞Meromorphic function; Monodromy; Tensor; manifold; singularity theory
版次1
doihttps://doi.org/10.1007/978-94-010-0834-1
isbn_softcover978-0-7923-6997-4
isbn_ebook978-94-010-0834-1Series ISSN 1568-2609
issn_series 1568-2609
copyrightSpringer Science+Business Media Dordrecht 2001
The information of publication is updating

書目名稱New Developments in Singularity Theory影響因子(影響力)




書目名稱New Developments in Singularity Theory影響因子(影響力)學(xué)科排名




書目名稱New Developments in Singularity Theory網(wǎng)絡(luò)公開度




書目名稱New Developments in Singularity Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱New Developments in Singularity Theory被引頻次




書目名稱New Developments in Singularity Theory被引頻次學(xué)科排名




書目名稱New Developments in Singularity Theory年度引用




書目名稱New Developments in Singularity Theory年度引用學(xué)科排名




書目名稱New Developments in Singularity Theory讀者反饋




書目名稱New Developments in Singularity Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:29:21 | 只看該作者
On the preparation theorem for subanalytic functionsater it was used by J.-M. Lion and J.-P. Rolin to study various properties of singular sets such as for instance: integration on subanalytic sets, o-minimality, order of contact between solutions of differential equations, see [.], [.].
板凳
發(fā)表于 2025-3-22 02:52:53 | 只看該作者
Computing Hodge-theoretic invariants of singularitiesace of rational differential . + 1-forms on ?. with poles only along . modulo exact forms. According to Griffiths [.], this space is filtered by the order of pole of representatives along . and the resulting filtration on ..(., .) is its ..
地板
發(fā)表于 2025-3-22 06:26:45 | 只看該作者
5#
發(fā)表于 2025-3-22 12:09:11 | 只看該作者
Classifying Spaces of Singularities and Thom Polynomialsd as theorems on existence and computation of so called .. In these notes we explain the definition of these polynomials based on the notion of the classifying space of singularities. This approach makes the ‘existence theorem’ trivial and also gives some ideas on computing these polynomials.
6#
發(fā)表于 2025-3-22 15:54:13 | 只看該作者
7#
發(fā)表于 2025-3-22 19:05:04 | 只看該作者
8#
發(fā)表于 2025-3-22 22:53:49 | 只看該作者
9#
發(fā)表于 2025-3-23 03:59:36 | 只看該作者
10#
發(fā)表于 2025-3-23 06:44:34 | 只看該作者
1568-2609 eties, mappings, vector or tensorfields, differential equations, models, etc.) on parameters..The articles collected here can be grouped under three headings. (A)Singularities of real maps; (B) Singular complex variables; and (C)Singularities of homomorphic maps.978-0-7923-6997-4978-94-010-0834-1Series ISSN 1568-2609
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
梅州市| 拉萨市| 耿马| 蓝田县| 达州市| 南城县| 绵阳市| 南漳县| 手游| 米脂县| 长宁区| 桂林市| 溧阳市| 台山市| 景洪市| 宜兰市| 乌审旗| 安吉县| 亳州市| 利辛县| 诏安县| 垦利县| 玉山县| 龙山县| 微山县| 漳平市| 保定市| 中西区| 开远市| 会理县| 双峰县| 社旗县| 依安县| 武清区| 酒泉市| 罗平县| 溧水县| 礼泉县| 海林市| 上林县| 贡嘎县|