找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Developments in Pseudo-Differential Operators; ISAAC Group in Pseud Luigi Rodino,M. W. Wong Book 2009 Birkh?user Basel 2009 curvature.g

[復制鏈接]
樓主: 復雜
31#
發(fā)表于 2025-3-26 23:21:48 | 只看該作者
,Ellipticity of Fredholm Pseudo-Differential Operators on ,,(?,),lm on ..(?.), 1 < . < ∞, then the pseudo-differential operator is elliptic. The basic idea is to construct an isometric operator .., λ ∈ ? {0}, on L.(?.) in order to prove the ellipticity of the Fredholm pseudo-differential operator with symbol in ... This result is then generalized for arbitrary sy
32#
發(fā)表于 2025-3-27 05:06:19 | 只看該作者
33#
發(fā)表于 2025-3-27 08:24:16 | 只看該作者
34#
發(fā)表于 2025-3-27 10:15:16 | 只看該作者
Type 1,1-Operators Defined by Vanishing Frequency Modulation,patible with negligible operators and stable under vanishing frequency modulation. Elaborating counter-examples of Ching, H?rmander and Parenti-Rodino, type 1, 1-operators with unclosable graphs are proved to exist; others are shown to lack the microlocal property as they flip the wavefront set of a
35#
發(fā)表于 2025-3-27 15:52:07 | 只看該作者
,Regularity for Quasi-Elliptic Pseudo-Differential Operators with Symbols in H?lder Classes,ype, the authors construct a suitable symbolic calculus and a parametrrx for quasi-elliptic operators; these tools are applied to the study of quasi-elliptic linear partial differential equations with H:older coefficients.
36#
發(fā)表于 2025-3-27 19:09:39 | 只看該作者
37#
發(fā)表于 2025-3-28 00:53:49 | 只看該作者
38#
發(fā)表于 2025-3-28 05:00:49 | 只看該作者
39#
發(fā)表于 2025-3-28 07:57:03 | 只看該作者
Hyperbolic Systems with Discontinuous Coefficients: Generalized Wavefront Sets, front set of the solution to a transport equation with discontinuous propagation speed and delta functions as initial data. The generalized wave front set turns out to have a more refined and informative structure than the wavefront set of the corresponding distributional limit.
40#
發(fā)表于 2025-3-28 12:53:28 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 06:44
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
崇阳县| 绥棱县| 深水埗区| 镇远县| SHOW| 方正县| 汝阳县| 公安县| 贺州市| 安福县| 会同县| 巴里| 县级市| 黄大仙区| 洛川县| 九龙城区| 孟州市| 昔阳县| 斗六市| 凌云县| 迭部县| 威信县| 上虞市| 博客| 丰台区| 左贡县| 郓城县| 高要市| 娄烦县| 宁南县| 临颍县| 永寿县| 郓城县| 靖边县| 辽宁省| 卢氏县| 沂南县| 深圳市| 九龙坡区| 荃湾区| 临洮县|