找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Developments in Lie Theory and Their Applications; Juan Tirao,Nolan R. Wallach Book 1992 Birkh?user Boston 1992 algebra.lie group.repr

[復制鏈接]
樓主: affidavit
51#
發(fā)表于 2025-3-30 09:40:54 | 只看該作者
,Some Zeta Functions Attached to ΓG/K,n . of Γ he assigned a certain remarkable analytic function Z.(?, .) (of one complex variable) whose zeros, for example, capture both topological and spectral properties of the space form Γ./. where .= SO(2). Z.(?, .), now called the ., satisfies a functional equation . → 1 → . (involving Harish-Cha
52#
發(fā)表于 2025-3-30 13:29:34 | 只看該作者
53#
發(fā)表于 2025-3-30 19:19:08 | 只看該作者
Unitary Representations of Reductive Lie Groups and the Orbit Method,ge enough to solve a range of interesting harmonic analysis problems. The Kirillov-Kostant philosophy of coadjoint orbits seeks to provide such a family. The purpose of these notes is to describe what is known about implementing that philosophy, particularly for reductive groups.
54#
發(fā)表于 2025-3-30 20:44:16 | 只看該作者
55#
發(fā)表于 2025-3-31 02:21:27 | 只看該作者
56#
發(fā)表于 2025-3-31 05:38:00 | 只看該作者
,The Vanishing of Scalar Curvature on 6 Manifolds, Einstein’s Equation, and Representation Theory,operate on g by the adjoint representation and on g* by the so-called coadjoint representation. Moreover, set .. = .(g). Since the bilinear form (., .) = .(.) on g × g is nonsingular, we can identify g and g*, which we shall do whenever it is convenient.
57#
發(fā)表于 2025-3-31 11:26:28 | 只看該作者
58#
發(fā)表于 2025-3-31 13:35:41 | 只看該作者
59#
發(fā)表于 2025-3-31 18:50:48 | 只看該作者
,Some Zeta Functions Attached to ΓG/K,spectral properties of the space form Γ./. where .= SO(2). Z.(?, .), now called the ., satisfies a functional equation . → 1 → . (involving Harish-Chandra’s .-function) and, up to finite exceptions involving the possible occurrence of . representations of . in .. (Γ.), ..(?,.) satisfies a .: its “nontrivial” zeros have real part equal ?.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 20:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
历史| 清苑县| 凭祥市| 阿城市| 若羌县| 无为县| 儋州市| 旌德县| 乌恰县| 文山县| 临猗县| 敖汉旗| 乳源| 永顺县| 济阳县| 宁安市| 石家庄市| 兴安盟| 北京市| 平罗县| 巩留县| 凤山县| 平顺县| 喜德县| 友谊县| 盐津县| 修水县| 且末县| 文登市| 澳门| 庐江县| 神池县| 大庆市| 西峡县| 内黄县| 托里县| 神农架林区| 合水县| 张家界市| 古浪县| 柳林县|