找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks; Fernando Gaxiola,Patricia Melin,Fevrier Valdez Book 2016 The

[復(fù)制鏈接]
查看: 51926|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:43:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks
編輯Fernando Gaxiola,Patricia Melin,Fevrier Valdez
視頻videohttp://file.papertrans.cn/665/664865/664865.mp4
概述Proposes a neural network learning method with type-2 fuzzy weight adjustment.Presents a mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights.P
叢書(shū)名稱SpringerBriefs in Applied Sciences and Technology
圖書(shū)封面Titlebook: New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks;  Fernando Gaxiola,Patricia Melin,Fevrier Valdez Book 2016 The
描述In this book a neural network learning method with type-2 fuzzy weight adjustment is proposed. The mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights are presented. The proposed method is based on research of recent methods that handle weight adaptation and especially fuzzy weights..The internal operation of the neuron is changed to work with two internal calculations for the activation function to obtain two results as outputs of the proposed method. Simulation results and a comparative study among monolithic neural networks, neural network with type-1 fuzzy weights and neural network with type-2 fuzzy weights are presented to illustrate the advantages of the proposed method..The proposed approach is based on recent methods that handle adaptation of weights using fuzzy logic of type-1 and type-2. The proposed approach is applied to a cases of prediction for the Mackey-Glass (for ?=17) and Dow-Jones time series, and recognition of person with iris biometric measure. In some experiments, noise was applied in different levels to the test data of the Mackey-Glass time series for showing that the type-2 fuzzy backpropagation ap
出版日期Book 2016
關(guān)鍵詞Computational Intelligence; Neural Networks; Type-2 Fuzzy Weight; Back-propagation Algorithm for Neural
版次1
doihttps://doi.org/10.1007/978-3-319-34087-6
isbn_softcover978-3-319-34086-9
isbn_ebook978-3-319-34087-6Series ISSN 2191-530X Series E-ISSN 2191-5318
issn_series 2191-530X
copyrightThe Author(s) 2016
The information of publication is updating

書(shū)目名稱New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks影響因子(影響力)




書(shū)目名稱New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks影響因子(影響力)學(xué)科排名




書(shū)目名稱New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks被引頻次




書(shū)目名稱New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks被引頻次學(xué)科排名




書(shū)目名稱New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks年度引用




書(shū)目名稱New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks年度引用學(xué)科排名




書(shū)目名稱New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks讀者反饋




書(shū)目名稱New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:04:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:30:47 | 只看該作者
Fernando Gaxiola,Patricia Melin,Fevrier Valdezopriately chosen effective diameter. Hard spheres are a starting point in the theory of liquids, as an ideal gas is in the theory of gases and a harmonic solid in solid-state physics. Nowadays a lot of data is available from computer simulations of hard spheres and from integral theories of correlat
地板
發(fā)表于 2025-3-22 07:35:23 | 只看該作者
5#
發(fā)表于 2025-3-22 09:49:46 | 只看該作者
6#
發(fā)表于 2025-3-22 13:35:33 | 只看該作者
duced in most particle sources. For these situations one can describe the systems with the microcanonical ensemble, apart from the short times during which the particles are exposed to some external manipulation (laser light, collisions), and possibly exchange of thermal radiation with the surroundi
7#
發(fā)表于 2025-3-22 19:29:57 | 只看該作者
New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks
8#
發(fā)表于 2025-3-23 01:10:56 | 只看該作者
Book 2016 to a cases of prediction for the Mackey-Glass (for ?=17) and Dow-Jones time series, and recognition of person with iris biometric measure. In some experiments, noise was applied in different levels to the test data of the Mackey-Glass time series for showing that the type-2 fuzzy backpropagation ap
9#
發(fā)表于 2025-3-23 04:05:55 | 只看該作者
10#
發(fā)表于 2025-3-23 07:52:31 | 只看該作者
New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks978-3-319-34087-6Series ISSN 2191-530X Series E-ISSN 2191-5318
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张北县| 浮梁县| 巩义市| 绥化市| 青川县| 巧家县| 巴南区| 顺平县| 休宁县| 新建县| 丹凤县| 封丘县| 金湖县| 葫芦岛市| 达州市| 隆安县| 运城市| 彭州市| 昌江| 昭苏县| 鄂伦春自治旗| 牡丹江市| 乌拉特中旗| 康定县| 鄂尔多斯市| 明光市| 佳木斯市| 屏山县| 象山县| 惠东县| 濉溪县| 吉木萨尔县| 威海市| 江源县| 太康县| 正镶白旗| 承德县| 五河县| 木兰县| 河源市| 康定县|