找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Analytic and Geometric Methods in Inverse Problems; Lectures given at th Kenrick Bingham,Yaroslav V. Kurylev,Erkki Somersal Book 2004 S

[復制鏈接]
樓主: 恰當
31#
發(fā)表于 2025-3-26 22:23:34 | 只看該作者
Metric Geometry we must begin with the length of paths as the primary notion. From this, we will derive a distance function. More precisely, we can introduce a new distance which is measured along the shortest path between two points in a space (as opposed to simply measuring the Euclidean distance between the two
32#
發(fā)表于 2025-3-27 03:54:37 | 只看該作者
33#
發(fā)表于 2025-3-27 06:47:01 | 只看該作者
34#
發(fā)表于 2025-3-27 12:02:18 | 只看該作者
35#
發(fā)表于 2025-3-27 17:01:46 | 只看該作者
Analytic Methods for Inverse Scattering Theoryering problems for time harmonic acoustic and Schr?dinger equations. Section 1 describes these two problems. In Section 2 we introduce the Hardy-Littlewood maximal function and define the Sobolev spaces in ?.. At the end of this Section we prove an important characterization of .. (?.) due to P. Haj
36#
發(fā)表于 2025-3-27 18:53:10 | 只看該作者
Ray Transform on Riemannian Manifolds function or a more general object (cohomology class, tensor field, etc.) on a manifold, given its integrals over submanifolds of a prescribed class. In these lectures we only consider integral geometry problems for which the above-mentioned submanifolds are one-dimensional. Strictly speaking, the l
37#
發(fā)表于 2025-3-27 23:16:28 | 只看該作者
38#
發(fā)表于 2025-3-28 03:56:24 | 只看該作者
39#
發(fā)表于 2025-3-28 06:24:03 | 只看該作者
Asymptotic Properties of Solutions to 3-particle Schr?dinger Equationsons of (. ? λ). = 0 in the Agmon-H?rmander space .* as the image of. .(λ)*. These stationary solutions admit asymptotic expansions in .* in terms of spherical waves associated with scattering channels.
40#
發(fā)表于 2025-3-28 11:07:21 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-24 16:57
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
迭部县| 岳普湖县| 迁安市| 北宁市| 高雄市| 黄山市| 吉林市| 璧山县| 遂昌县| 防城港市| 上饶市| 东明县| 合山市| 亚东县| 大宁县| 金寨县| 平阴县| 武城县| 郎溪县| 鲜城| 安宁市| 云南省| 太白县| 贵州省| 荣昌县| 沈阳市| 科尔| 吉首市| 泰来县| 长白| 林口县| 延长县| 乌拉特中旗| 黄骅市| 泌阳县| 沐川县| 时尚| 松阳县| 梅河口市| 万盛区| 德州市|