找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Analytic and Geometric Methods in Inverse Problems; Lectures given at th Kenrick Bingham,Yaroslav V. Kurylev,Erkki Somersal Book 2004 S

[復(fù)制鏈接]
樓主: 恰當
21#
發(fā)表于 2025-3-25 06:18:09 | 只看該作者
22#
發(fā)表于 2025-3-25 08:14:35 | 只看該作者
23#
發(fā)表于 2025-3-25 14:37:40 | 只看該作者
24#
發(fā)表于 2025-3-25 19:51:44 | 只看該作者
978-3-642-07379-3Springer-Verlag Berlin Heidelberg 2004
25#
發(fā)表于 2025-3-25 21:20:20 | 只看該作者
Intertwining Operators in Inverse Scatteringheory on the real line for the Schr?dinger operator. These methods are based on the construction of operators intertwining the Schr?dinger operator with the ‘free operator’ obtained when the potential term is removed. We refer to the monograph [5] by V. A. Marchenko and to the paper [6] for a detailed presentation of this technique.
26#
發(fā)表于 2025-3-26 01:43:58 | 只看該作者
27#
發(fā)表于 2025-3-26 04:26:49 | 只看該作者
28#
發(fā)表于 2025-3-26 09:59:23 | 只看該作者
29#
發(fā)表于 2025-3-26 13:51:56 | 只看該作者
Uniqueness in Inverse Obstacle Scatteringng of time-harmonic acoustic or electromagnetic waves. We will review and outline different methods for proving global and local uniqueness theorems for impenetrable and penetrable obstacles. In addition, we will draw attention to open uniqueness problems in inverse obstacle scattering.
30#
發(fā)表于 2025-3-26 19:05:06 | 只看該作者
Geometric Methods for Anisotopic Inverse Boundary Value Problemsld of the domain. Differential forms arise as the natural objects to integrate over submanifolds of each dimension. We will see that the (possibly anisotropic) material response to a field can be naturally associated with a Hodge star operator.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 05:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
葫芦岛市| 甘泉县| 玉溪市| 海林市| 渭南市| 遂川县| 阳朔县| 朝阳区| 木兰县| 彰武县| 丁青县| 永福县| 佛学| 同德县| 荥阳市| 桐城市| 社会| 三原县| 汉阴县| 北辰区| 江北区| 达州市| 当雄县| 秭归县| 顺平县| 甘泉县| 河北省| 吉安市| 金昌市| 苍南县| 綦江县| 济阳县| 连平县| 基隆市| 友谊县| 安陆市| 格尔木市| 宁波市| 遂宁市| 合阳县| 聂荣县|