找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Advances in Statistics and Data Science; Ding-Geng Chen,Zhezhen Jin,Yichuan Zhao Book 2017 The Editor(s) (if applicable) and The Autho

[復制鏈接]
查看: 24019|回復: 53
樓主
發(fā)表于 2025-3-21 18:27:28 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱New Advances in Statistics and Data Science
編輯Ding-Geng Chen,Zhezhen Jin,Yichuan Zhao
視頻videohttp://file.papertrans.cn/665/664759/664759.mp4
概述Presents timely discussions on methodological developments and real-world applications, with particular respect to big data analytics.Explores new frontiers of statistical modeling and advanced biosta
叢書名稱ICSA Book Series in Statistics
圖書封面Titlebook: New Advances in Statistics and Data Science;  Ding-Geng Chen,Zhezhen Jin,Yichuan Zhao Book 2017 The Editor(s) (if applicable) and The Autho
描述.This book is comprised of the presentations delivered at the 25.th. ICSA Applied Statistics Symposium held at the Hyatt Regency Atlanta, on June 12-15, 2016. This symposium attracted more than 700 statisticians and data scientists working in academia, government, and industry from all over the world. The theme of this conference was the?“Challenge of Big Data and Applications of Statistics,” in recognition of the advent of big data era, and the symposium offered opportunities for learning, receiving inspirations from old research ideas and for developing new ones, and for promoting further research collaborations in the data sciences. The invited contributions addressed rich topics closely related to big data analysis in the data sciences, reflecting recent advances and major challenges in statistics, business statistics, and biostatistics. Subsequently, the six editors selected 19 high-quality presentations and invited the speakers to prepare full chapters for this book, which showcases new methods in statistics and data sciences, emerging theories, and case applications from statistics, data science and interdisciplinary fields. The topics covered in the book are timely and have
出版日期Book 2017
關鍵詞big data; DNA statistical analysis; clinical trials design; functional data analysis; gene expression an
版次1
doihttps://doi.org/10.1007/978-3-319-69416-0
isbn_softcover978-3-319-88776-0
isbn_ebook978-3-319-69416-0Series ISSN 2199-0980 Series E-ISSN 2199-0999
issn_series 2199-0980
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱New Advances in Statistics and Data Science影響因子(影響力)




書目名稱New Advances in Statistics and Data Science影響因子(影響力)學科排名




書目名稱New Advances in Statistics and Data Science網(wǎng)絡公開度




書目名稱New Advances in Statistics and Data Science網(wǎng)絡公開度學科排名




書目名稱New Advances in Statistics and Data Science被引頻次




書目名稱New Advances in Statistics and Data Science被引頻次學科排名




書目名稱New Advances in Statistics and Data Science年度引用




書目名稱New Advances in Statistics and Data Science年度引用學科排名




書目名稱New Advances in Statistics and Data Science讀者反饋




書目名稱New Advances in Statistics and Data Science讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:51:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:29:02 | 只看該作者
Meta-Analysis for Rare Events As Binary Outcomes, or to update the estimates of treatment effects by further including recent relevant clinical studies to date. It is not uncommon that some outcomes are rare events, in particular for safety assessments. There are methodological challenges to perform meta-analyses for rare events, especially for t
地板
發(fā)表于 2025-3-22 06:45:02 | 只看該作者
5#
發(fā)表于 2025-3-22 09:07:27 | 只看該作者
6#
發(fā)表于 2025-3-22 14:41:21 | 只看該作者
Tuning Parameter Selection in the LASSO with Unspecified Propensitylthough it attracts numerous attentions in both theory and computation, we still encounter many difficulties in real applications. For instance, in a real data set, we may have various missing values. To correctly adopt the LASSO, we have to incorporate the missing data mechanism, or the propensity,
7#
發(fā)表于 2025-3-22 17:32:12 | 只看該作者
8#
發(fā)表于 2025-3-22 22:29:46 | 只看該作者
Estimating Parameters in Complex Systems with Functional Outputs: A Wavelet-Based Approximate Bayesinderlying parameters cannot be explicitly specified using a likelihood function. These situations often occur when functional data arises from a complex system and only numerical simulations (through a simulator) can be used to describe the underlying data-generating mechanism. To estimate the unkno
9#
發(fā)表于 2025-3-23 02:02:58 | 只看該作者
A Maximum Likelihood Approach for Non-invasive Cancer Diagnosis Using Methylation Profiling of Cell-in many CpG sites or CpG-rich regions, and DNA from tumor cells can be released into the circulating blood. Thus, the tumor-derived cell-free DNA can be detected in the patient’s blood and, therefore, it is possible to use the methylation data of the blood samples for cancer diagnosis. We design a m
10#
發(fā)表于 2025-3-23 09:01:21 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
仁寿县| 通山县| 安龙县| 黄平县| 体育| 印江| 大竹县| 莱州市| 西峡县| 商河县| 富民县| 遵化市| 香河县| 合肥市| 含山县| 洪洞县| 西盟| 阳朔县| 明溪县| 潜山县| 东乡族自治县| 肇州县| 乡宁县| 恩施市| 涞源县| 昭平县| 安新县| 德化县| 普安县| 进贤县| 阿拉尔市| 延长县| 泗洪县| 安西县| 集安市| 怀宁县| 松溪县| 紫金县| 深圳市| 浦北县| 淮滨县|