找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Advances in Soft Computing in Civil Engineering; AI-Based Optimizatio Gebrail Bekda?,Sinan Melih Nigdeli Book 2024 The Editor(s) (if ap

[復(fù)制鏈接]
樓主: Goiter
41#
發(fā)表于 2025-3-28 16:39:46 | 只看該作者
42#
發(fā)表于 2025-3-28 20:07:07 | 只看該作者
Machine Learning Approaches for Predicting Compressive and Shear Strength of EB FRP-Reinforced Concr enhancing structural performance, durability, and service life, yet accurately predicting the shear strength of these elements remains complex due to intricate interactions between influencing factors that conventional empirical equations struggle to capture. This comprehensive review critically a
43#
發(fā)表于 2025-3-29 02:17:24 | 只看該作者
44#
發(fā)表于 2025-3-29 05:31:29 | 只看該作者
Prediction of Bi-Linear Strength Envelope of Brazilian Soils Using Machine Learning Techniques,r, based on recently produced studies, it is believed that the development of computational models to estimate them is a tool capable of meeting this demand. This study aims, therefore, to develop a machine learning model capable of estimating bi-linear strength envelopes of soils. In order to achie
45#
發(fā)表于 2025-3-29 07:32:37 | 只看該作者
Assessment of Unconfined Compressive Strength of Stabilized Soil Using Artificial Intelligence Tool method of determining the UCS is often expensive and time-consuming. Also, the determination of UCS by conventional methods is less accurate and reliable because of the maintenance and calibration of instruments. Therefore, many empirical and advanced computational methods have been introduced and
46#
發(fā)表于 2025-3-29 13:06:14 | 只看該作者
A Review of Deformations Prediction for Oil and Gas Pipelines Using Machine and Deep Learning,preserving pipeline integrity is important for a secure and sustainable energy provider. The fast development of Machine Learning (ML) methods gives a beneficial possibility to build predictive models that can efficiently resolve these complex problems. This review paper principally emphasizes apply
47#
發(fā)表于 2025-3-29 15:38:33 | 只看該作者
,Determination of the Effect of XGBoost’s Parameters on a Structural Problem, walls have both structural constraints and constraints such as overturning, shear and soil-bearing capacity. In this chapter, a dataset is generated by optimizing the cantilever-type reinforced concrete retaining wall with Teaching Learning Based Optimization (TLBO). This dataset is analyzed with E
48#
發(fā)表于 2025-3-29 23:14:34 | 只看該作者
49#
發(fā)表于 2025-3-30 03:11:40 | 只看該作者
50#
發(fā)表于 2025-3-30 06:38:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 06:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
锦屏县| 巴南区| 桃江县| 嘉黎县| 乐都县| 南涧| 随州市| 新民市| 措美县| 广汉市| 海南省| 望城县| 张家港市| 噶尔县| 普格县| 林芝县| 资源县| 徐汇区| 江源县| 土默特左旗| 信宜市| 油尖旺区| 旌德县| 白玉县| 高阳县| 施甸县| 荆门市| 邯郸县| 永德县| 阳曲县| 哈巴河县| 漳州市| 宜都市| 仪征市| 武胜县| 平江县| 延津县| 远安县| 长岭县| 遂昌县| 陇南市|