找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nevanlinna’s Theory of Value Distribution; The Second Main Theo William Cherry,Zhuan Ye Book 2001 Springer-Verlag Berlin Heidelberg 2001 Co

[復(fù)制鏈接]
樓主: CLAST
11#
發(fā)表于 2025-3-23 13:02:41 | 只看該作者
The First Main Theorem,As we mentioned in the introduction, the basis for Nevanlinna’s theory are his two “main” theorems. This chapter discusses the first and easier of the two.
12#
發(fā)表于 2025-3-23 16:58:33 | 只看該作者
13#
發(fā)表于 2025-3-23 20:08:04 | 只看該作者
Nevanlinna’s Theory of Value Distribution978-3-662-12590-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
14#
發(fā)表于 2025-3-24 01:51:27 | 只看該作者
15#
發(fā)表于 2025-3-24 02:28:24 | 只看該作者
https://doi.org/10.1007/978-3-662-12590-8Complex analysis; Nevanlinna; Nevanlinna theory; approximation; diophantine; diophantine approximation; er
16#
發(fā)表于 2025-3-24 07:14:58 | 只看該作者
William Cherry,Zhuan YeIncludes supplementary material:
17#
發(fā)表于 2025-3-24 13:11:53 | 只看該作者
Introduction,plex variable will have . complex zeros, provided that the zeros are counted with multiplicity. If .(.) is a degree . polynomial, then .grows essentially like .. as . → ∞. Therefore, we can rephrase the Fundamental Theorem of Algebra as follows: a non-constant polynomial in one complex variable take
18#
發(fā)表于 2025-3-24 18:20:01 | 只看該作者
19#
發(fā)表于 2025-3-24 21:09:12 | 只看該作者
20#
發(fā)表于 2025-3-25 00:20:27 | 只看該作者
The Second Main Theorem via Logarithmic Derivatives,e lines, and the proof we give here is generally speaking similar to the proof given in Hayman’s book [Hay 1964]. Neither Nevanlinna nor Hayman were interested in the precise structure of the error term, and they did not use the refined logarithmic derivative estimates of Gol’dberg and Grinshtein, a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
峨山| 手游| 汶上县| 山阳县| 晋州市| 化德县| 乐至县| 石景山区| 文成县| 彰化县| 体育| 临夏市| 蒙自县| 横山县| 桦甸市| 襄汾县| 南宫市| 南郑县| 徐汇区| 泽普县| 长沙县| 获嘉县| 宜兴市| 突泉县| 五河县| 清徐县| 湘潭市| 陵川县| 赫章县| 安远县| 澎湖县| 民丰县| 贵定县| 湖北省| 巨鹿县| 平舆县| 新晃| 诏安县| 白朗县| 龙口市| 西平县|