找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nevanlinna’s Theory of Value Distribution; The Second Main Theo William Cherry,Zhuan Ye Book 2001 Springer-Verlag Berlin Heidelberg 2001 Co

[復(fù)制鏈接]
樓主: CLAST
11#
發(fā)表于 2025-3-23 13:02:41 | 只看該作者
The First Main Theorem,As we mentioned in the introduction, the basis for Nevanlinna’s theory are his two “main” theorems. This chapter discusses the first and easier of the two.
12#
發(fā)表于 2025-3-23 16:58:33 | 只看該作者
13#
發(fā)表于 2025-3-23 20:08:04 | 只看該作者
Nevanlinna’s Theory of Value Distribution978-3-662-12590-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
14#
發(fā)表于 2025-3-24 01:51:27 | 只看該作者
15#
發(fā)表于 2025-3-24 02:28:24 | 只看該作者
https://doi.org/10.1007/978-3-662-12590-8Complex analysis; Nevanlinna; Nevanlinna theory; approximation; diophantine; diophantine approximation; er
16#
發(fā)表于 2025-3-24 07:14:58 | 只看該作者
William Cherry,Zhuan YeIncludes supplementary material:
17#
發(fā)表于 2025-3-24 13:11:53 | 只看該作者
Introduction,plex variable will have . complex zeros, provided that the zeros are counted with multiplicity. If .(.) is a degree . polynomial, then .grows essentially like .. as . → ∞. Therefore, we can rephrase the Fundamental Theorem of Algebra as follows: a non-constant polynomial in one complex variable take
18#
發(fā)表于 2025-3-24 18:20:01 | 只看該作者
19#
發(fā)表于 2025-3-24 21:09:12 | 只看該作者
20#
發(fā)表于 2025-3-25 00:20:27 | 只看該作者
The Second Main Theorem via Logarithmic Derivatives,e lines, and the proof we give here is generally speaking similar to the proof given in Hayman’s book [Hay 1964]. Neither Nevanlinna nor Hayman were interested in the precise structure of the error term, and they did not use the refined logarithmic derivative estimates of Gol’dberg and Grinshtein, a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁化县| 勐海县| 和顺县| 小金县| 黄浦区| 雅安市| 阿鲁科尔沁旗| 东宁县| 郎溪县| 郁南县| 宜川县| 乳源| 中卫市| 定西市| 肥乡县| 高雄县| 庆城县| 泗水县| 双流县| 天峨县| 容城县| 偃师市| 黑龙江省| 苏尼特右旗| 达州市| 周宁县| 河东区| 巫山县| 新竹市| 万宁市| 札达县| 上栗县| 内江市| 德令哈市| 鹿泉市| 罗山县| 安康市| 西乌珠穆沁旗| 巢湖市| 崇仁县| 万年县|